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ABSTRACT
In real-world recommendation problems, especially those with a

formidably large item space, users have to gradually learn to esti-

mate the utility of any fresh recommendations from their experi-

ence about previously consumed items. This in turn affects their

interaction dynamics with the system and can invalidate previous

algorithms built on the omniscient user assumption. In this paper,

we formalize a model to capture such “learning users” and design an

efficient system-side learning solution, coined Noise-Robust Active

Ellipsoid Search (RAES), to confront the challenges brought by the

non-stationary feedback from such a learning user. Interestingly,

we prove that the regret of RAES deteriorates gracefully as the

convergence rate of user learning becomes worse, until reaching

linear regret when the user’s learning fails to converge. Experi-

ments on synthetic datasets demonstrate the strength of RAES for

such a contemporaneous system-user learning problem. Our study

provides a novel perspective on modeling the feedback loop in

recommendation problems.

KEYWORDS
Learning Agent, Dueling Bandit, Ellipsoid Method, Recommenda-

tion System

1 INTRODUCTION
A recommender system (hereinafter referred to as system) is de-

signed to predict users’ preferences over items so as to maximize

the utility of the recommended items [21, 33]. Driven by this prin-

ciple, there has been a tremendous amount of research efforts and

industry practices on developing various recommendation algo-

rithms that predict item utility for each user based on the observed

user-item interactions, including collaborative filtering [20, 26, 33],

latent factor models [21, 30, 31], neural recommendation models

[11, 17, 25], and sequential recommendation models [18, 35, 39].

Nevertheless, this paradigm is built on an overly simplified user

model: users are omniscient about the (millions of) items and thus

allow the system to directly query their preferences. This assump-

tion ceases to be true in real-world recommendation applications

where the size of the item space could be formidably large. As a

result, instead of being a static “classifier” [8, 24, 26], an ordinary

user typically is also learning the item utility from her interactions

with the system. For instance, a user might be new to a category of

items; thus, her responses to such items can only be accurate after
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consuming the recommended items, possibly even after multiple

times.

This “inaccuracy” in users’ feedback cannot be simply modeled

as random noise, since it naturally depend on the interaction history

and thus could be biased by her previous choices. More specifically,

any small bias (e.g., towards a particular item category) in the sys-

tem’s past recommendations will bias the user’s learning, which

consequently leads to biased user feedback, which then further bias

the system’s subsequent recommendations. This forms a vicious

circle – even if an optimal item is recommended to the user, she

might not take it due to her currently inaccurate utility estimation;

but failing to consume the optimal item will stop the user from

exploring that direction, and thus leading to repeated future rejec-

tions of the same optimal recommendations. This is similar to the

explore-exploit dilemma in bandit problems, but is much worse be-

cause in bandit problems the noise of user feedback is independent

from the interaction history, whereas here the bias will accumulate.

To address the limitation caused by the previous omniscient user

assumption, we propose to model a user as an autonomous agent

who is learning to evaluate the utility of system’s recommendations

from her interaction history. We formulate the system-user inter-

action in a dueling bandit setup [41], such that the user does not

need to explicitly disclose their estimated utility of a chosen item.

This more challenging feedback assumption is motivated by the

observation that an ordinary user will most often take action that

fulfills her information needs with the least effort, and thus does not

bother providing details, e.g., numerical ratings [36]. Specifically,

we assume at each time step, the system proposes two items for

the user and can only observe the user’s choice between the two

items, i.e., comparative feedback. The system aims at minimizing

the cumulative regret from the interaction with the user in a given

period 𝑇 .

A very important distinction from the contextual dueling bandit

problem [10] is that we assume the user does not know the best

choice ahead of time and will respond to current recommendations

based on learned parameters from her past experience. Our model

of such a learning user is quite general, without any need of re-

stricting to specific learning algorithms or to any user decision

rules. Our only assumption about the user learning is that the user

learns to evaluate new items’ utility based on her consumed items,

and her estimation uncertainty on an item is proportional to the

projection of this item onto the consumed item space. Natural ex-

amples include a user equipped with LinUCB [24] or simply using

the least square estimator (LSE) over history. Our user behavior

assumption also considers potentially large estimation error and

accounts for different decision making pattern under uncertainty



(i.e., being optimistic, pessimistic, or purely myopic), which we will

elaborate in later sections.

Our contributions are twofold. First, we propose a more realistic

(though challenging) problem setting for interactive recommen-

dation. Second, we design a learning algorithm for the system,

named Noise-Robust Active Ellipsoid Search (RAES), to make effi-

cient learning possible when dealing with a learning user. We prove

RAES enjoys a regret upper bound of �̃� (𝑑2𝑇
1

2
+𝛾 ), which deterio-

rates gracefully in 𝛾 , i.e., the convergence rate of user’s learning. In

addition, we present a lower bound to confirm the tightness of our

regret bound and present empirical studies comparing RAES with

relevant baselines.

2 RELATEDWORK.
The first related direction is the dueling bandit problem. First pro-

posed by Yue and Joachims [42], dueling bandit models an online

learning problem where the feedback at each step is restricted to

a noisy comparison between a pair of arms. In follow-up works,

Ailon et al. [2] developed solutions by proposing a black-box re-

duction from dueling bandit to classic multi-armed bandit (MAB),

Dudík et al. [10] studied the adversarial and contextual extensions

of dueling bandit and generalized the solution concept. Our feed-

back assumption is fundamentally different from that in dueling

bandit as the user’s feedback evolves as she learns from the realized

rewards. This coupled environment results in the failure of almost

all existing dueling bandit algorithms, including those mentioned

above, as we will demonstrate in our empirical study.

The ellipsoid method serves as a key building block in our algo-

rithm design. First proposed by Grötschel et al. [15], Karmarkar [19],

the ellipsoid method is used to prove linear programs are solvable

in polynomial time. Such an elegant idea has found applications

in preference elicitation [4], recommender systems design [14, 37],

and feature-based dynamic pricing [7, 27]. The main challenge in

applying the ellipsoid method to our problem is that due to the

user’s inaccurate feedback, the system cannot control the intersec-

tion of the cutting hyperplane and thus needs to determine when

to shrink the uncertainty set adaptively.

Another related line of research includes MAB algorithms that

interact with strategic agents. Kremer et al. [22] proposed the incen-

tivized exploration problem, which studies how a system could max-

imize thewelfare of a group of users who only care about their short-

term utility. Follow-upworks extended the setting by allowing users

to communicate [3] and introducing incentive-compatibility con-

straints [28, 29]. Our motivation differs from this line of work in

that: 1). the user in our problem is a learning agent having repeated

interactions with the system rather than a one-time myopic visitor

to the system; 2). instead of modeling an informationally advan-

taged system to persuade the user to explore, we investigate how

an disadvantaged system with mere access to comparative feed-

back can help optimize the user’s accumulated utilities. Recently,

Yao et al. [40] proposed a MAB problem where the system collects

feedback from an explorative user who decides whether to accept

a recommendation based on her estimated confidence intervals.

Different from it, our work is built on the linear contextual setting

and adopts a more general user behavior model.

3 THE PROBLEM OF CONTEMPORANEOUS
SYSTEM-USER LEARNING

As mentioned in the introduction, our setup inherits from the cele-

brated contextual dueling bandit problem but considers intrinsically

different user behaviors, i.e., a learning and thus dynamically evolv-

ing user. Let A be the set of candidate items (henceforth, the arms)
that the system can recommend at each round 𝑡 ∈ [𝑇 ]. We are

interested in scenarios where A is formidably large and diverse.

Our results hold for arbitrary A, continuous or discrete, so long as

it has a non-trivial interior and is sufficiently “dense” (see formal

definitions later). The user’s expected utility of consuming any arm

𝒂 ∈ A is governed by a hidden preference parameter \∗ ∈ R𝑑
and, specifically, is realized by the linear reward function \⊤∗ 𝒂. At
each round 𝑡 , the system recommends a pair of arms (𝒂0,𝑡 , 𝒂1,𝑡 ) and
the user chooses one of them, i.e., the comparative feedback as in

dueling bandits. We assume that the user does not know \∗ either
and relies on her current estimation \𝑡 to make a choice between

(𝒂0,𝑡 , 𝒂1,𝑡 ). Since any non-zero scaling on \∗ does not affect the

user’s feedback, we assume ∥\∗∥2 = 1 without loss of generality.

The key conceptual contribution of our problem setup is a for-

mal non-stationary user model that captures a wide range of user-

system interactions yet still permits tractable analysis of online

learning with non-trivial regret guarantees. We defer a formal de-

scription of this user model to Section 3.1, and only summarize the

interaction protocol at each round 𝑡 ∈ [𝑇 ] as follows:
(1) The system recommends (𝒂0,𝑡 , 𝒂1,𝑡 ) ∈ A2

to the user.

(2) The user uses \𝑡 , i.e., her estimation of \∗ at time 𝑡 , to choose

an arm from (𝒂0,𝑡 , 𝒂1,𝑡 ), denoted as 𝒂𝑡 .
(3) The user observes reward 𝑟𝑡 and updates \𝑡+1 based on her

observed historyH𝑡 = {(𝒂𝑠 , 𝑟𝑠 )}𝑡𝑠=1
.

(4) The system observes the user’s choice 𝒂𝑡 and updates its

recommendation policy.

The learning objective for the system is to minimize the regret

defined as

𝑅𝑇 =

𝑇∑
𝑡=1

\⊤∗ (2𝒂∗ − 𝒂0,𝑡 − 𝒂1,𝑡 ), (1)

where 𝒂∗ = arg max𝒂∈A \⊤∗ 𝒂.
Next we introduce the remaining core components of the user

behavior model by specifying: 1). her method for estimating \𝑡 ; and

2). her strategy for selecting an arm based on \𝑡 . We refer to them

as the estimation rule and the decision rule respectively.

3.1 Modeling a Learning User
We consider a general model of a learning user as follows.

(1) (Estimation Rule) The user collects the past observations

H𝑡−1 and calculate \𝑡 = 𝐹 (H𝑡−1) using any learning algo-

rithm 𝐹 , such that

∥\∗ − \𝑡 ∥𝑉𝑡 ≤ 𝑐1𝑡
𝛾1𝑔(𝛿) (2)

holds with probability 1 − 𝛿 , where 𝑉𝑡 = 𝑉0 + ∑𝑡−1

𝑠=1
𝒂𝑠𝒂⊤𝑠 ,

𝛾1 ∈ (0, 1

2
) and 𝑐1 are constants such that 𝑐1 is independent

of 𝑡 . 𝑉0 is assumed to be any Positive Semi-definite (PSD)

matrix that summarizes the user’s prior knowledge regarding
the item space.



(2) (Decision Rule) When facing recommendations (𝒂0,𝑡 , 𝒂1,𝑡 ),
the user makes the decision based on the following index
which combines her estimated utility and an explorative

bonus term

𝑟𝑖 = \⊤𝑡 𝒂𝑖,𝑡 + 𝛽
(𝑖)
𝑡 ∥𝒂𝑖,𝑡 ∥𝑉 −1

𝑡
, 𝑖 = {0, 1}, (3)

where {𝛽 (0)𝑡 }𝑡 ∈[𝑇 ] and {𝛽 (1)𝑡 }𝑡 ∈[𝑇 ] are two arbitrary se-

quences satisfying 𝛽
(𝑖)
𝑡 ∈ [−𝑐2𝑡

𝛾2 , 𝑐2𝑡
𝛾2 ] for some constant

𝑐2 and 𝛾2. Then, the user returns her choice 𝒂𝑡 with the

largest index 𝑟 (breaking ties arbitrarily).

In essence, the estimation rule captures a crucial property of a

learning user – the utility estimation for an item becomes more

accurate only when the user has experienced more similar items

before. This is reflected in the data-weighted matrix norm in (2). In

other words, the user’s response will not be reliable if the recom-

mended item is barely related to her previously experienced items.

A similar assumption is made to capture the user’s explorative be-

haviors for previously unseen items, as described by (3). This is

fundamentally different from classical recommendation settings,

where the uncertainty in user feedback is modeled by homoge-

neous noise of the same scale throughout the course of user-system

interactions.

One can interpret𝑉0 as

∑𝑛
𝑖=1

𝒂−𝑖𝒂⊤−𝑖 , where 𝒂−𝑖 is the user’s con-
sumed item before engaging with the system. The spectrum of 𝑉0

thus reflects the estimation accuracy regarding different directions

of the item space. For example, if 𝑉0 has some small eigenvalues,

the user’s response can be inaccurate in the corresponding eigen-

directions. Our algorithm does not depend on the exact knowledge

about 𝑉0, but only on a lower bound estimation of its smallest

eigenvalue.

Next we describe a learning user example, which is also the

running example of our (more general) user behavior model. As

the true underlying utility function is linear, i.e., 𝑟𝑡 = \⊤∗ 𝒂𝑡 + [𝑡 ,

where [𝑡 is sub-Gaussian noise, linear regression is a natural choice

for a learning user’s estimation rule and its estimation confidence

bound satisfies ∥\∗ − \𝑡 ∥𝑉𝑡 ≤ 𝑂

(√
𝑑 log

𝑡
𝛿

)
with probability 1 − 𝛿

[23]. In this case, 𝛾1 can be any positive number and 𝑔(𝛿) =
√

log
1

𝛿
.

But our user model covers more general estimation methods than

linear regression. For example, to capture the scenario where an

ordinary user does not necessarily have the capacity to precisely

execute such a sophisticate estimation method, we allow the user’s

estimation to have much larger error at the order of 𝑂 (𝑡𝛾1 ) as in
(2), where the parameter 𝛾1 controls the convergence rate of user

learning.

For the decision rule, we have to account for a user’s poten-

tial exploration behavior when facing uncertainty, which has been

observed and supported in numerous cognitive science [6, 9] and be-

havior science [13, 38] studies. A natural choice is to follow the “op-

timism in the face of uncertainty” (OFUL) principle [1]. Specifically,

if \𝑡 is the least square estimator, a learning user employing the cel-

ebrated LinUCB can be realized by setting 𝛽
(0)
𝑡 = 𝛽

(1)
𝑡 = 𝑂 (

√
log 𝑡)

in (3). But again our decision rule in (3) is much more general. To

capture cases where users use a much looser confidence bound

estimation or even less rational arm choices, we allow 𝛽
(𝑖)
𝑡 to de-

viate in a much larger range with 𝑂 (𝑡𝛾2 ) (compared to 𝑂 (
√

log 𝑡)
in LinUCB). Additionally, we allow {𝛽 (𝑖)𝑡 }𝑡 ∈[𝑇 ] to be arbitrary and

even consist of negative values. This enables us to model highly

non-stationary user behaviors, e.g., being optimistic, pessimistic,

purely myopic (when 𝛽1

𝑡 = 𝛽0

𝑡 = 0), or an arbitrary mixture of any

of them.

Parameters {𝛾1, 𝛾2} depict the user learning’s convergence rate
and user’s exploration strength, respectively. Notably, we are only

interested in the regime (𝛾1, 𝛾2) ∈ [0, 1

2
) × [0, 1

2
), because trace(𝑉𝑡 )

is in the order of 𝑂 (𝑡) by the definition of 𝑉𝑡 . Therefore, we must

have ∥\∗ − \𝑡 ∥𝑉𝑡 = 𝑂 (
√
𝑡) whenever \∗ is within a constant ℓ2

distance to the user’s estimated parameter\𝑡 . As a result, if𝛾1 ≥ 1/2,

it must be that the estimated \𝑡 is at least a constant distance away

from the true \∗, and so is the estimated reward 𝑟𝑖 from the expected

true reward. This makes it impossible for the system to do no-regret

learning. Similarly, ∥𝒂𝑖,𝑡 ∥𝑉 −1

𝑡
will be Θ(

√
𝑡) for some 𝒂𝑖,𝑡 and a

𝛾2 ≥ 1/2 will also make the estimated 𝑟𝑖 arbitrarily bad. As we will

demonstrate in later analysis, the estimation error of 𝑟 turns out

to be governed by max{𝛾1, 𝛾2}. Hence, for the ease of references,
in the following analysis we conveniently refer to the above user

behaviors as (𝑐,𝛾)-rationality, formally defined as:

Definition 1. [(𝑐,𝛾)−rationality] Any user characterized by the
Estimation Rule and the Decision Rule is said to be (𝑐,𝛾)−rational if
𝛾 ≥ max{𝛾1, 𝛾2}, 𝑐 ≥ max{𝑐1, 𝑐2}.

As a concrete example, a user is (𝑐,𝛾)-rational for an arbitrarily

small𝛾 if she runs LinUCB
1
. This is because under LinUCBwe have

∥\∗ − \𝑡 ∥𝑉𝑡 = 𝑂 (
√

log 𝑡) and {𝛽 (0)𝑡 , 𝛽
(1)
𝑡 } are also both in the order

𝑂 (
√

log 𝑡). Therefore, 𝛾 here can be an arbitrarily small positive

number since
log 𝑡
𝑡𝛾 → 0 as 𝑡 → ∞ for any 𝛾 > 0.

4 NO-REGRET SYSTEM LEARNING FROM A
LEARNING USER

In this section, we develop an efficient learning algorithm for the

system to learn from any (𝑐,𝛾)-rational user. The regret of our

algorithm has an order of �̃� (𝑐𝑑2𝑇
1

2
+𝛾 ). Recall that, a user using

the LinUCB algorithm corresponds to an arbitrarily small 𝛾 . In this

case, system learning essentially recovers the optimal 𝑂 (
√
𝑇 ) re-

gret in bandit learning, despite that the system 1). only has limited

comparative feedback about the user’s utility estimation; and 2).

faces non-stationary and non-stochastic user behaviors. More inter-

estingly, our algorithm’s regret deteriorates gracefully as 𝛾 ∈ [0, 1

2
)

increases, i.e., as the user’s learning converges at a slower rate

or being more explorative as captured by 𝛾 . The key conceptual

message from our theoretical findings is that it is possible for a

system to learn from a learning user, and the convergence rate of the
system’s learning deteriorates linearly in the convergence rate of the
user’s learning.

The only caveat for our analysis is the 𝑂 (𝑑2) dependence in

the regret upper bound, which is worse than the regret’s linear

dependence on 𝑑 for standard no-regret learning problems. We

1
This is also the reason for our terminology “rationality”. That is, there exists (es-

sentially) 0-rational learning users, so a 𝛾 -rational user for some 𝛾 > 0 must not be

perfectly rational.



Figure 1: The unit ball (dashed line) is centered at the origin.
𝐿𝑡 crosses the origin, cuts E𝑡 through its center 𝒙𝑡 and yields
E𝑡+1. In a high dimensional space, we have additional degree
of freedom to pick 𝐿𝑡 that shrinks E𝑡 along all possible direc-
tions.

believe this worse dependence is fundamentally due to the fact

that the system has to learn from the users’ binary feedback with

diminishing yet non-stochastic noise. This more challenging setup

fails classic linear contextual bandit algorithms that rely on rewards

with stochastic noise. We thus develop an entirely different solution,

which is a novel use of the celebrated ellipsoid method originally de-

veloped for solving linear programs [15, 16]. The ellipsoid method

employs a simple yet elegant idea: to estimate the parameter, we

first construct an uncertainty ellipsoid that encloses it. Then dur-

ing each subsequent iteration, we draw a hyperplane that cuts the

current uncertainty ellipsoid into two fractions and query an oracle

to determine which fraction contains the true parameter with high

probability. Then we replace the current uncertainty ellipsoid with

the smallest possible ellipsoid that contains the remaining fraction,

and so forth. As the iteration goes, we expect the volume of the con-

fidence ellipsoid to shrink and thus a higher parameter estimation

precision. In our setup, we maintain a sequence of confidence ellip-

soid {E𝑡 } for \∗ and reduce the volume of E𝑡 via a carefully chosen

cutting hyperplane. The user’s binary comparative feedback tells

which side of the hyperplane contains the true parameter, which

prepares the subsequent cuts. We provide necessary technical de-

tails of the ellipsoid method in the following section. Readers who

are familiar are encouraged to skip this section.

4.1 Preliminaries on Ellipsoid Method
A 𝑑 × 𝑑 matrix 𝐴 is symmetric when 𝐴 = 𝐴⊤

, and any symmetric

matrix 𝐴 admits an eigenvalue decomposition 𝐴 = 𝑈 Σ𝑈⊤
, where

𝑈 is a orthogonal matrix and Σ = diag(𝜎1, · · · , 𝜎𝑑 ) is a diagonal
matrix with diagonal elements 𝜎1 ≥ · · · ≥ 𝜎𝑑 . We refer to 𝜎𝑖 (𝐴)
as the 𝑖-th largest eigenvalue of 𝐴. A symmetric matrix 𝐴 is called

positive definite (PD) if all its eigenvalues are strictly positive.

{𝒈⊤ (𝒛 − 𝒙) ≤ 𝑏} ∩ E ′(𝒙 ′, 𝑃 ′)

An ellipsoid is a subset of R𝑑 defined as

E(𝒙, 𝑃) = {𝒛 | (𝒛 − 𝒙)⊤𝑃−1 (𝒛 − 𝒙) ≤ 1},

where 𝒙 ∈ R𝑑 specifies its center and the PD matrix 𝑃 specifies its

geometric shape. Each of the 𝑑 radii of E(𝒙, 𝑃) corresponds to the

square root of an eigenvalue of 𝑃 and the volume of the ellipsoid is

given by

Vol(E(𝒙, 𝑃)) = 𝑉𝑑

√
det 𝑃 = 𝑉𝑑

√√√
𝑑∏
𝑖=1

𝜎𝑑 ,

where 𝑉𝑑 is a constant that represents the volume of the unit ball

in R𝑑 . If a hyperplane 𝒈⊤ (𝒛 − 𝒙) = 𝑏 with normal direction 𝒈 and

intersection 𝑏 cuts the ellipsoid E(𝒙, 𝑃) to two pieces, the smallest

ellipsoid containing the area {𝒈⊤ (𝒛 − 𝒙) ≤ 𝑏} ∩ E(𝒙, 𝑃) can be

captured by E ′(𝒙 ′, 𝑃 ′), where the new center 𝒙 ′ and the shape

matrix 𝑃 ′ can be computed via the following closed form formula:

𝒙 ′ = 𝒙 − 1 + 𝑑𝛼
𝑑 + 1

𝑃�̃�, (4)

𝑃 ′ =
𝑑2 (1 − 𝛼2)
𝑑2 − 1

(
𝑃 − 2(1 + 𝑑𝛼)

(𝑑 + 1) (1 + 𝛼) 𝑃�̃��̃�
⊤𝑃

)
, (5)

𝛼 = − 𝑏√
𝒈⊤𝑃𝒈

, (6)

�̃� =
1√

𝒈⊤𝑃𝒈
𝒈, (7)

where 𝛼 represents the cutting-depth which we will elaborate on

later. To narrow down the feasible region of the target parameters,

it is desirable to let Vol(E ′) as small as possible. At least, we need

to ensure that Vol(E ′) < Vol(E). Basic algebraic calculation shows

that

Vol(E′)
Vol(E) =

√
det 𝑃 ′

det 𝑃
=

(𝑑2 (1 − 𝛼2)
𝑑2 − 1

) 𝑑
2

(
1 − 2(1 + 𝑑𝛼)

(𝑑 + 1) (1 + 𝛼)

) 1

2

(8)

=

(
1 + 1 + 𝑑𝛼

𝑑 − 1

) 𝑑−1

2

(
1 − 1 + 𝑑𝛼

𝑑 + 1

) 𝑑+1

2

=

(𝑑 (1 + 𝛼)
𝑑 − 1

) 𝑑−1

2

(𝑑 (1 − 𝛼)
𝑑 + 1

) 𝑑+1

2

, (9)

where Eq (8) is from Eq (5) and the fact that det(𝑃 − 𝛽𝒗𝒗⊤) =

(1 − 𝛽 ∥𝒗∥2

𝑃
) det(𝑃). Eq (9) indicates that Vol(E ′) < Vol(E) if and

only if 𝛼 ∈ (− 1

𝑑
, 1). The quantity 𝛼 serves as an indicator of the

“depth" of the cut: 𝛼 ∈ (− 1

𝑑
, 0) corresponds to a shallow-cut where

the proposed cutting hyperplane removes less than half of the

volume of the ellipsoid; 𝛼 ∈ (0, 1) corresponds to a deep-cut where

more than half of the volume is removed. And 𝛼 = 0 happens only

when 𝑏 = 0, meaning the cutting hyperplane goes through the

center 𝒙 and exactly half of the volume is removed. In our problem

setting, since we need to deal with the uncertainty in the user’s

response, we may only expect shallow-cuts. In addition, from Eq

(9) we can show that for any − 1

𝑑
< 𝛼 < 1,

Vol(E′)
Vol(E) ≤ exp

(
− (1 + 𝑑𝛼)2

2𝑑

)
. (10)

4.2 Warm-up: Fast Learning from a Perfect
User

A (significantly) simplified setup. To illustrate the main idea of

our solution, we start with a stylized situation, where we make

the following simplifications: 1). the user knows \∗ precisely and

makes decisions by directly comparing \⊤∗ 𝒂0,𝑡 and \
⊤
∗ 𝒂1,𝑡 ; 2). the

action set is simply the unit ball A = {𝒂 : ∥𝒂∥2 ≤ 1}.



Algorithm 1 Active Ellipsoid Search on Unit Sphere

1: Input: Dimension 𝑑 > 0, number of iterations 𝑇 > 0.

2: Initialization: 𝒙0 = 0, 𝑃0 = 𝐼𝑑 .

3: while 0 ≤ 𝑡 ≤ 𝑇 do
4: Compute eigen-decomposition

𝑃𝑡 =

𝑑∑
𝑖=1

𝜎
(𝑡 )
𝑖

𝒖 (𝑡 )
𝑖

𝒖 (𝑡 )⊤
𝑖

, 𝜎
(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

;

5: Compute any unit vector 𝒈𝑡 ∈ span{𝒖 (𝑡 )
1

, 𝒖 (𝑡 )
2

} that is or-
thogonal to 𝒙𝑡 ;

6: Pick (𝒂0,𝑡 , 𝒂1,𝑡 ) = (−𝒈𝑡 ,𝒈𝑡 ); and observe the user’s choice

𝒂𝑖,𝑡 , 𝑖 ∈ {0, 1}.
7: Set �̃�𝑡 = (2𝑖 − 1)𝒈𝑡/∥𝒈𝑡 ∥𝑃𝑡 ;
8: Update

𝒙𝑡+1 = 𝒙𝑡 −
1

𝑑 + 1

𝑃𝑡 �̃�𝑡 ;

𝑃𝑡+1 =
𝑑2

𝑑2 − 1

(
𝑃𝑡 −

2

𝑑 + 1

𝑃𝑡 �̃�𝑡 �̃�
⊤
𝑡 𝑃𝑡

)
.

9: Output: The estimation of \∗ : ˆ\𝑇 = 𝒖 (𝑇 )
1

.

Technical Highlight I: Novel Use of the Ellipsoid Method. Algo-
rithm 1 describes our solution under this simplified problem set-

ting. We should note Algorithm 1 differs from the classic ellipsoid

method in two aspects. First, our algorithm has the freedom to ac-
tively choose the hyperplane 𝐿𝑡 by picking {𝒂0,𝑡 , 𝒂1,𝑡 } (thus named

“Active Ellipsoid Search”), while the classic ellipsoid method is al-

ways passively fed with an arbitrary separating hyperplane. Second,

𝐿𝑡 has to cross the origin by construction. Therefore, to accelerate

the shrinkage of the volume of E𝑡 (i.e., Vol(E𝑡 )), we prefer a cutting
direction 𝒈𝑡 = 𝒂0,𝑡 −𝒂1,𝑡 such that 𝐿𝑡 goes through the center 𝒙𝑡 , i.e.,
𝒈⊤𝑡 𝒙𝑡 = 0, and Vol(E𝑡 ) is halved after each iteration, as illustrated

in Figure 1.

Though given more freedom, we also face a strictly harder prob-

lem. Specifically, when solving LPs, it suffices to reach an ellipsoid

E𝑡 with a small volume where the LP objective is guaranteed to

be approximately optimal. However, our goal here is to identify

the direction of \∗ with small error, and thus a small Vol(E𝑡 ) is
necessary but not sufficient. For instance, a zero-volume ellipsoid in

R𝑑 can still enclose a 𝑑 − 1 dimensional subspace and thus contains

a very diverse set of directions that are far from \∗.
To achieve this strictly harder objective, we need 𝐿𝑡 to cut E𝑡

along the direction in which E𝑡 has the largest width, i.e., the most

uncertain direction. This requires 𝒈𝑡 to be aligned with the eigen-

vector corresponding to the largest eigenvalue of 𝑃𝑡 , which is in

general not compatible with 𝒈⊤𝑡 𝒙𝑡 = 0. Here then comes the crux of

our approach – we relax the second condition by picking 𝒈𝑡 from a

two-dimensional space spanned by the eigenvectors corresponding

to the top-2 largest eigenvalues of 𝑃𝑡 . Under this choice of 𝒈𝑡 , E𝑡
is guaranteed to converge to a skinny-shaped ellipsoid with its

longest axis converging to the direction of \∗ at an exponential

rate. The detail is presented in Algorithm 1, and the convergence

analysis of Algorithm 1 is formalized in the following theorem.

Theorem 1. At each time step 𝑡 in Algorithm 1, let the eigenvalues
of 𝑃𝑡 be 𝜎

(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

. For any 𝑑 > 1,𝑇 > 0, we have

(1) for any 2 ≤ 𝑖 ≤ 𝑑 ,

𝜎
(𝑇 )
𝑖

≤ exp

(
4

𝑑
− 𝑇

𝑑2

)
, (11)

(2) the ℓ2 estimation error for \∗ is given by\∗ − ˆ\𝑇


2

≤ 2

√
𝑑 − 1 exp

(
2

𝑑
− 𝑇

2𝑑2

)
. (12)

We postpone the proof of Theorem 1 to Appendix A. This the-

orem indicates that the ℓ2 estimation error for \∗ converges to

zero at the rate of 𝑂
(
𝑑

1

2 exp (− 𝑇
2𝑑2

)
)
. In other words, to guarantee

∥\∗ − ˆ\𝑇 ∥2 < 𝜖 , at most 𝑂 (𝑑2
log

𝑑
𝜖 ) iterations are needed.

4.3 Robust Learning from a Learning User
The previous section illustrates our system learning principle, but

under a greatly simplified setting with a perfect user. In this section,

we extend the solution to account for a learning user who does not

know \∗ and keeps refining her estimation \𝑡 . Here, the user’s feed-

back still provides a linear inequality regarding\∗ and thus similarly

serves as a cutting hyperplane. But since the user acts based on the

index 𝑟𝑖 = \⊤𝑡 𝒂𝑖,𝑡 + 𝛽
(𝑖)
𝑡 ∥𝒂𝑖,𝑡 ∥𝑉 −1

𝑡
, the cutting hyperplane now has

the form 𝐿𝑡 = {𝒛 : 𝒛⊤ (𝒂0,𝑡 −𝒂1,𝑡 ) = 𝛽
(1)
𝑡 ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
−𝛽

(0)
𝑡 ∥𝒂0,𝑡 ∥𝑉 −1

𝑡
}.

Importantly, the intercept term now depends on {𝛽 (0)𝑡 , 𝛽
(1)
𝑡 } which

are arbitrary within the uncertainty region [−𝑐𝑡𝛾 , 𝑐𝑡𝛾 ].

Technical Highlight II: Ellipsoid Search with Noise. Due to the

aforementioned noise in the users’ binary feedback, we thus face

an interesting challenge – how to perform the ellipsoid search under

(non-stochastic) noisy feedback? Somewhat surprisingly, this basic

question was not addressed in literature about ellipsoid method.

We tackle this challenge by refining the ellipsoid method to tolerate

carefully chosen scales of noise and decreasing the tolerance as

the ellipsoid shrinks. In order to elicit more accurate feedback, our

algorithm must ensure the diversity of the recommended items

to prepare the user for improved precision of her responses in

all directions. To this end, we improve Algorithm 1 by adaptively

preparing the user until a desirable level of accuracy of her esti-

mated \𝑡 is reached and then cut the ellipsoid. To our knowledge,

this noise-robust version of ellipsoid method is novel by itself and

of independent interest. We coin this new algorithm “Noise-Robust

Active Ellipsoid Search", or RAES in short.

Regularity assumptions on the action set. Before introducing the
RAES algorithm, we first pose several natural and technical as-

sumptions regarding the action set A ⊂ R𝑑 . Specifically, B𝑑𝑝 (0, 𝑟 )
denotes the 𝑑-dimensional ℓ𝑝 ball centered at the origin with ra-

dius 𝑟 . Without loss of generality, we assume 0 ∈ A ⊂ B𝑑
2
(0, 𝐷1)

since one can always shift all actions by the same amount and then

re-scale the actions without changing the users’ responses.

The first assumption is a familiar one, as also used in previous

works such as [32].

Assumption 1 (𝐿-Smooth Best Arm Response Condition,

𝐿-SRC). Let 𝒙∗A = arg max𝒙′∈A 𝒙⊤𝒙 ′,∀𝒙 ∈ A. There exists a con-
stant 𝐿 > 0 such that for any pair of non-zero unit vectors 𝒙,𝒚 ∈ R𝑑 ,
we have

∥𝒙∗A −𝒚∗A ∥2 ≤ 𝐿 · ∥𝒙 −𝒚∥2 .



Algorithm 2 Noise-Robust Active Ellipsoid Search (RAES)

1: Input: Action set A ⊂ R𝑑 with constants (𝐷1, 𝐷0, 𝐿, 𝜖0), time

horizon 𝑇0 and 𝑇 , cutting threshold 𝑘 > 1, and probability

threshold 𝛿 > 0

2: Initialization: A user who is (𝑐,𝛾)−rational, _0 > 0 be any

lower bound estimation of the minimum eigenvalue of 𝑉0, set

𝑉0 = _0𝐼𝑑 , 𝒙0 = 0, 𝑃0 = 𝐼𝑑 .

3: while 0 ≤ 𝑡 ≤ 𝑇 do
4: Compute eigen-decomposition

𝑃𝑡 =
∑𝑑
𝑖=1

𝜎
(𝑡 )
𝑖

𝒖 (𝑡 )
𝑖

𝒖 (𝑡 )⊤
𝑖

, 𝜎
(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

.

5: Compute a unit vector 𝒈𝑡 ∈ span{𝒖 (𝑡 )
1

, 𝒖 (𝑡 )
2

} that is orthogo-
nal to 𝒙𝑡 ;

6: Pick any pair (𝒂0,𝑡 , 𝒂1,𝑡 ) such that 𝒂1,𝑡 −𝒂0,𝑡 =𝑚𝒈𝑡 ,𝑚 ≥ 2𝐷0,

and compute 𝛼𝑡 according to (15);

7: if 𝑡 ≤ 𝑇0 and 𝛼𝑡 ≥ − 1

𝑘𝑑
then

8: Recommend (𝒂0,𝑡 , 𝒂1,𝑡 ), observe the user’s choice 𝒂𝑡 =

𝒂𝑖,𝑡 , 𝑖 ∈ {0, 1};
9: Set �̃�𝑡 = (2𝑖 − 1)𝒈𝑡/∥𝒈𝑡 ∥𝑃𝑡 ;
10: Update

𝒙𝑡+1 = 𝒙𝑡 −
1 + 𝑑𝛼𝑡
𝑑 + 1

𝑃𝑡 �̃�𝑡 ; (13)

𝑃𝑡+1 =
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

(
𝑃𝑡 −

2(1 + 𝑑𝛼𝑡 )𝑃𝑡 �̃�𝑡 �̃�⊤
𝑡 𝑃𝑡

(𝑑 + 1) (1 + 𝛼𝑡 )

)
; (14)

11: else if 𝑡 ≤ 𝑇0 then
12: Compute 𝒗1 and 𝒗𝑑 , the two eigenvectors associated

with the largest and smallest eigenvalues of 𝑉𝑡 , and pick

(𝒂0,𝑡 , 𝒂1,𝑡 ) = 𝐷0 ( 4

5
𝒗1 ± 3

5
𝒗𝑑 );

13: Recommend (𝒂0,𝑡 , 𝒂1,𝑡 ), observe user’s choice 𝒂𝑡 ;
14: (𝒙𝑡+1, 𝑃𝑡+1) = (𝒙𝑡 , 𝑃𝑡 );
15: else
16: Compute 𝒂𝑡 = arg max𝒂∈A 𝒖 (𝑡 )⊤

1
𝒂;

17: Recommend (𝒂𝑡 , 𝒂𝑡 );
18: (𝒙𝑡+1, 𝑃𝑡+1) = (𝒙𝑡 , 𝑃𝑡 );
19: Update 𝑉𝑡+1 = 𝑉𝑡 + 𝒂𝑡𝒂⊤𝑡 .

A compact set A satisfies 𝐿-SRC if and only if A can be repre-

sented as the intersection of closed balls of radius 𝐿. Intuitively, the

𝐿-SRC condition requires the boundary of A to have a curvature

that is bounded below by a positive constant. For instance, the

unit ball satisfies 1-SRC, and an ellipsoid of the form {𝒖 ∈ R𝑑 :

𝒖⊤𝑃−1𝒖 ≤ 1}, where 𝑃 is a PSD matrix, satisfies the
_max (𝑃 )√
_min (𝑃 )

-SRC.

Assumption 2 (𝜖-Dense Condition, 𝜖-DC). A is an 𝜖-cover of
a continuous set ¯A, i.e., ¯A ⊂ ∪𝒙∈AB𝑑2 (𝒙, 𝜖). In addition, there exists
constants 𝐷1 > 𝐷0 > 0 such that B𝑑

2
(0, 𝐷0) ⊆ A, ¯A ⊆ B𝑑

2
(0, 𝐷1).

This assumption suggests the action set A is sufficiently dense.

A continuous A is 0-DC. However, 𝜖-DC relaxes the continuity

requirement on A by allowing A to take the form of an 𝜖-net of

a continuous set
¯A. For convenience of references, we associate

any element 𝒂 ∈ ¯A with an element 𝒂 ∈ A such that ∥𝒂 − 𝒂∥2 ≤ 𝜖 .

For our analysis, this relation does not need to be exclusive or

reversible.

As indicated in the initialization of Algorithm 2, RAES does not

rely on the exact values of (𝑐,𝛾,𝑉0), which could be difficult to

attain in reality. Instead, any reasonable upper bounds for 𝑐 and

𝛾 , and a lower bound of _min (𝑉0) suffice. Similar to Algorithm 1,

RAES also maintains a sequence of confidence ellipsoids {E𝑡 }. A
hyper-parameter 𝑇0 separates the time horizon 𝑇 into two phases.

At time step 𝑡 , the system first proposes the most promising cutting

direction 𝒈𝑡 . However, different from Algorithm 1 which always

cuts E𝑡 immediately, RAES needs to compute the cutting depth

𝛼𝑡 (defined in (15)) and determine whether the user’s feedback is

precise enough for the system to yield an improved estimation.

Intuitively, 𝛼𝑡 measures the normalized signed distance between

the center of E𝑡 and the cutting hyperplane 𝐿𝑡 : 𝛼𝑡 ∈ (− 1

𝑑
, 0) cor-

responds to a shallow-cut where 𝐿𝑡 removes less than half of the

volume of the ellipsoid; 𝛼𝑡 ∈ (0, 1) corresponds to a deep-cut where
more than half of the volume is reduced; and 𝛼𝑡 = 0 happens only

when 𝐿𝑡 cuts E𝑡 through the center. Since we need to deal with the

uncertainty in the user’s response, we may only expect shallow-

cuts. Depending on 𝛼𝑡 and 𝑇0, the system makes a decision among

the following three options, which we refer to as cut, exploration,
and exploitation:

(1) (Cut) If 𝑡 ≤ 𝑇0 and 𝛼𝑡 ≤ − 1

𝑘𝑑
, cut E𝑡 and update (𝒙𝑡 , 𝑃𝑡 ).

(2) (Exploration) If 𝑡 ≤ 𝑇0 and 𝛼𝑡 > − 1

𝑘𝑑
, make recommen-

dations to ensure the user is exposed to the least explored

directions in 𝑉𝑡 .

(3) (Exploitation) If 𝑡 > 𝑇0, recommend the empirically best arm

to the user.

The purpose of an exploration step is to prepare the user such

that a smaller 𝛼 can be expected in the future. By the definition

of 𝛼𝑡 , the only way to decrease it is by increasing _min (𝑉𝑡 ), which
can be achieved by presenting the least exposed direction to the

user
2
. Finally, when the system believes the user’s estimation error

of \∗ is acceptable to induce a small regret, it stops preparing the

user and recommends the empirically best arm when no further

cut is available. The algorithm can be understood as a phase of

exploration of length 𝑇0 followed by a phase of exploitation, with a

sequence of cut steps scattered within. The sublinear regret can be

guaranteed by carefully choosing 𝑇0.

Before analyzing RAES, we provide an intuitive explanation for

it. First of all, the cutting direction 𝒈𝑡 is the same as the choice in

Algorithm 1, which ensures the separation hyperplane can intersect

E𝑡 along the most uncertain direction. Next, we translate the user’s

comparative feedback regarding \𝑡 into an inequality regarding \∗
with high probability, i.e., \⊤∗ 𝒈𝑡 ≤ (or ≥)𝑏, by pinning down the

intersection term 𝑏. This can be realized by leveraging the property

of the user’s estimation and decision rules, resulting in the explicit

form of 𝛼𝑡 . To simplify the technical analysis, with a slight abuse

of notation, we use the subscript 𝑡 in {(𝒙𝑡 , 𝑃𝑡 )}𝑁𝑡=1
to describe the

confidence ellipsoids after the 𝑡-th cut in RAES, and 𝑁 is the total

number of cuts in horizon𝑇 . Lemma 1 characterizes the effect from

each cut, exploration, and exploitation step:

2
A straightforward way for increasing_min (𝑉𝑡 ) is to feed the user with the eigenvector
corresponding to _min (𝑉𝑡 ) . However, to avoid forcing a user to choose between two

identical items (if they are not optimal), we let the system recommend two different

items.



Lemma 1. If we choose

𝛼𝑡 = −
𝑐𝑡𝛾

(
∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
+ 𝑔(𝛿)∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

)
+ 2𝜖0

∥𝒈𝑡 ∥𝑃𝑡
(15)

in Algorithm 1, we have

(1) After each cut, Vol(E𝑡+1) ≤ exp

(
− (𝑘−1)2

2𝑘2𝑑

)
Vol(E𝑡 ).

(2) If at least 𝑑 exploration steps are taken starting from any time
step 𝑡0 to 𝑡0 +𝑛, we have _min (𝑉𝑛+𝑡0

) ≥ _min (𝑉𝑡0
) + 4𝐷0

25
−3𝜖0.

(3) At any exploitation step 𝑡 , the instantaneous regret is upper
bounded by 2𝐿∥\∗ − 𝒖 (𝑡 )

1
∥2

2
.

Using Lemma 1, we can derive the convergence rate of 𝜎
(𝑡 )
𝑖

and

the regret upper bound of RAES in the following Theorem 2, whose

proof can be found in Appendix B.

Theorem 2. For any 𝑑 > 1, 𝑛 > 0, let 𝜎 (𝑛)
𝑖

be the 𝑖-th largest
eigenvalue of 𝑃𝑛 after the 𝑛-th cut, we have

(1) For any 2 ≤ 𝑖 ≤ 𝑑 ,

𝜎
(𝑛)
𝑖

≤ exp

(
4

𝑑
− (𝑘 − 1)2𝑛

𝑘2𝑑2

)
. (16)

(2) When 𝑇0 = 𝑂

(
𝑐𝐿

1

2 𝐷
1

2

1
𝐷
− 3

2

0
𝑔(𝛿)𝑑2𝑇

1

2
+𝛾
)
and

𝜖0 < 𝑂
(
𝑐𝐷1𝐷

− 1

2

0
𝑑−

1

2𝑇− 1

4
+𝛾

2

)
, the regret of RAES is at most

𝑂

(
𝑐𝐿

1

2 𝐷
3

2

1
𝐷
− 3

2

0
𝑔( 𝛿

𝑇0

)𝑑2𝑇
1

2
+𝛾
)
with probability 1 − 𝛿 .

Theorem 2 suggests when A is continuous or sufficiently dense,

RAES achieves a regret upper bound �̃� (𝑐𝑑2𝑇
1

2
+𝛾 )when𝑔( 𝛿

𝑇0

) grows
logarithmically in 𝑇0. Recall that 𝛾 ∈ [0, 1

2
) denotes the rational-

ity of the user: when 𝛾 is large, the system obtains less accurate

responses from the user and thus suffers from a worse regret guar-

antee. When 𝛾 = 0, e.g., the user executes LinUCB, we get an upper

bound of the order �̃� (
√
𝑇 ), which nearly matches the lower bound,

as we will show in the following section.

4.4 A Regret Lower Bound
We conclude this technical section by showing a regret lower bound

for the system’s learning. This lower bound applies for any 𝛾 > 0,

and it nearly matches the above upper bound w.r.t. time horizon

𝑇 when 𝛾 is close to zero. This result leaves an intriguing open

question about how tight our Algorithm 2 is for general 𝛾 , i.e., for

every 𝛾 ∈ (0, 1/2), what is the best possible regret for the system?

We remark that resolving this open question appears to require

significantly different machinaries as used in current lower bound

proofs for bandit algorithms since these arguments are primarily

based on information theory and thus intrinsically rely on assump-

tion of random noises [23, 32], whereas the user’s feedback noise in

our model is arbitrary (though also diminishing with more rounds).

We thus leave this as an interesting future direction to explore.

Theorem 3. For any 𝛾 > 0, there exists a function 𝑇0 (𝑑) > 0 such
that for any 𝑑 ≥ 1, 𝑇 > 𝑇0 (𝑑), and any algorithm G that has merely
access to the comparison feedback given by a rational user defined in

Definition 1, there exists \∗ ∈ 𝜕B𝑑
1
such that the expected regret 𝑅𝑇

defined in (1) obtained by G satisfies

𝑅
(𝑠)
𝑇

(G, \∗) ≥
exp(−2)

8

(𝑑 − 1)
√
𝑇 . (17)

Theorem 3 may appear not surprising since, intuitively, the sys-

tem’s learning task appears no easier than the standard stochastic

linear bandit problems for which the lower bound is already𝑂 (
√
𝑇 )

[32]. However, it turns out that delivering a rigorous proof is more

subtle than this intuition, and for that we have to overcome two

technical challenges: 1). adapting the current minimax lower bound

proof for stochastic linear bandits to the setup where the norm of \∗
is bounded away from zero; 2). constructing a black-box reduction

from the system’s regret to the user’s regret. Due to the space limit,

we defer the proof details to Appendix C.

5 EXPERIMENT
In this section, we study the empirical performance of RAES to val-

idate our theoretical analysis by running simulations on synthetic

datasets in comparison with several baselines.

5.1 Experiment Setup and Baselines
There is no direct baseline for comparison since the learning envi-

ronment we studied is new. Given the linear reward and the binary

comparative feedback assumptions, we take several contextual du-

eling bandit algorithms for comparison, including Dueling Bandit

Gradient Descent (DBGD) [42], Doubler [2], and Sparring [2, 34].

The configuration of baseline algorithms are specified as following:

Dueling Bandit Gradient Descent (DBGD). : DBGD [42] main-

tains the currently best candidate 𝒂𝑡 and compares it with a neigh-

boring point 𝒂𝑡 + [𝒖𝑡 along a random direction 𝒖𝑡 . An update is

taken when the proposed point wins the comparison. DBGD works

for continuous convex action set and has a regret guarantee of

𝑂 (𝑇 3/4). Although its theoretical guarantee only holds under a

strictly concave utility function, it can be reasonably adapted to our

problem setting empirically. DBGD’s hyper-parameters include the

starting point𝒘0, and two learning rates 𝛿,𝛾 that control the step-

lengths for proposing new points and update the current points,

respectively. In the experiment, these hyper-parameters are set to

(𝒘0, 𝛿, 𝛾) = (0, 𝑑−
1

2𝑇− 1

4 ,𝑇− 1

2 ), as recommended in [42].

Doubler. : Doubler [2] is the first approach that converts a dueling
bandit problem into a conventional multi-armed bandit (MAB)

problem. Doubler proceeds in epochs of exponentially increasing

size: in each epoch, the left arm is sampled from a fixed distribution,

and the right arm is chosen using an MAB algorithm to minimize

regret against the left arm. The feedback received by the MAB

algorithm is the number of wins the right arm encounters when

compared against the left arm. Doubler is proved to have �̃� (𝑇 1/2)
regret for continuous action set under the linear reward assumption.

The black-box MAB algorithm that is needed to initiate Doubler is

set to the OFUL algorithm in [1].

Sparring. : Sparring [2, 34] is also a general reduction from du-

eling bandit to MAB. Like Doubler, it also requires black-box calls

to an MAB algorithm and achieves regret of the same order as the

MAB algorithm. Instead of comparing with a fixed distribution,
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Figure 2: The regret of RAES against a learning user with dif-
ferent 𝑉0 and 𝛾 over time. Left: Fix 𝛾 = 0.1, plot for different
choices of 𝑉0; Right: Fix 𝑉0 = 𝐼𝑑 , plot for different choices of
𝛾 .

Sparring initializes two MAB instances and lets them “spar” against

each other. As a heuristic improvement of Doubler, Sparring does

not have a regret upper bound guarantee but is reported to enjoy a

better performance compared to Doubler [2]. The black-box MAB

algorithm that is needed to initiate Sparring is set to the OFUL

algorithm in [1].

In all experiments, we fix the action set A = B𝑑
2
(0, 1), i.e.,

𝐷0 = 𝐷1 = 1, and 𝛿 = 0.1, 𝑘 = 1.05. We consider a (1, 𝛾)-rational
user with 𝛾 ∈ {0, 0.2} and prior knowledge matrix 𝑉0. The user’s

decision sequence {𝛽 (0)𝑡 } and {𝛽 (1)𝑡 } are independently drawn from
[−𝑡𝛾 , 𝑡𝛾 ]. The ground-truth parameter \∗ is sampled from 𝜕B𝑑

2
(0, 1)

and the reported results are collected from the same problem in-

stance and averaged over 10 independent runs.

5.2 Experiment Results
Robustness of RAES against a learning user: We first demon-

strate the performance of RAES under (𝑇,𝑇0, 𝑑) = (10000, 1500, 5)
against a (1, 𝛾)-rational user with different 𝛾 and𝑉0 in Figure 2. The

x-axis denotes time step 𝑡 and y-axis denotes the accumulated re-

gret up to the time step 𝑡 . The left panel illustrates the performance

of RAES when 𝛾 = 0.1 and 𝑉0 ∈ {𝑉0 (𝑖) : 0 ≤ 𝑖 ≤ 5}, where 𝑉0 (𝑖) is
the diagonal matrix with 𝑖 diagonal entries being 1 while other 5− 𝑖
entries being 100. Unsurprisingly, RAES achieves the best perfor-

mance when the user has the most informative prior 𝑉0 (0). When

𝑉0 has small eigenvalues, RAES needs more exploration steps in the

first𝑇0 rounds, but the resulting added regret is not significant. The

right panel shows the result when 𝑉0 = 𝐼𝑑 and 𝛾 ∈ {0, 0.1, 0.2, 0.3}
which confirms our theoretical analysis that the regret of RAES

grows in order 𝑂 (𝑇
1

2
+𝛾 ).

Comparison with baseline algorithms: The comparison be-

tween RAES and the three baselines against learning users are

shown in Figure 3, 4, where the x-axis denotes different time hori-

zons 𝑇 , and the y-axis denotes the corresponding accumulated

regret. {𝛾,𝑇0} are set to {0, 0.2} and 0.25 × 𝑑2

√
𝑇 . The left panel

shows the result with 𝑉0 = 100𝐼𝑑 , i.e., each algorithm is facing

a well-prepared user, while the right panel is plotted with 𝑉0 =

diag(100, 20, 5, 2, 1). The result demonstrates that RAES enjoys the

best performance and is robust against different types of learning

users. Since Doubler and Sparring employ a black-box linear ban-

dit algorithm as their subroutine, the violation of the stochastic

reward assumption breaks down the linear bandit algorithm and
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Figure 3: The accumulated regret of RAES and three baseline
algorithms. Different colors specify different algorithms.
Each star represents the accumulated regret (y-axis) of the
algorithm given time horizon 𝑇 (x-axis) with 𝛾 = 0. Left:
𝑉0 = 100𝐼𝑑 ; right: 𝑉0 = diag(100, 10, 5, 2, 1).

thus the failure of the algorithms themselves. For DBGD, the left

panel suggests that it can still enjoy a sub-linear regret under milder

users’ rationality assumptions. However, when the user’s prior 𝑉0

is ill-posed (i.e., _min (𝑉0) is small), the performance of DBGD de-

teriorates seriously. In particular, under an ill-posed 𝑉0, the user’s

feedback can be misleading along certain directions, and the design

of DBGD does not provide any mechanism to increase the accuracy

of user feedback along these directions. The degradation of DBGD

becomes even more evident when 𝛾 is larger, as shown by the stark

contrast in Figure 4. More comparison results with larger 𝑑 can be

found in Appendix ??.
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Figure 4: The accumulated regret of RAES and three baseline
algorithms against a learning user with different 𝛾,𝑉0, and𝑇 .
Different colors specify different algorithms, and each star
represents the accumulated regret (y-axis) of the algorithm
given time horizon 𝑇 (x-axis) with 𝛾 = 0.2. Left: 𝑉0 = 100𝐼𝑑 ;
right: 𝑉0 = diag(100, 10, 5, 2, 1).

6 CONCLUSION
Motivated by the observation that users’ feedback can be coupled

with their interaction history with a recommender system, we

propose a new problem setting where the system learns from non-

stationary feedback of a learning user. Extending the dueling bandit

framework, we formulate the problem of “learning from a learner”

and establish an efficient learning algorithm based on the ellipsoid

method with a near-optimal regret guarantee. Besides the new algo-

rithm, our user learning model also provides a new perspective to

studying the feedback loop in recommender systems. The negative

empirical results of baseline algorithms demonstrate how inaccu-

racy of user feedback is formed and amplified on the system’s side



in its subsequent recommendations, if failing to consider the pro-

gression of user learning. A key insight of our proposed solution is

that a healthy recommender system needs to expose a diversified

spectrum of items to its users and thus “foster” them to respond

with informed feedback. This leads to the win-win outcome for

both users and the system in exploring the item space.
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Appendix to “Learning from a Learning User for Optimal Recommendations”

A OMITTED PROOFS IN SECTION 4.2
To prove Theorem 1, we need the following technical lemmas. Lemma 2 states that the product of the largest two eigenvalues of 𝑃𝑡 must

shrink w.r.t. a constant factor after each cut. Since det(𝑃𝑡 ) approaches zero at an exponential rate (from Eq (10)), 𝑃𝑡 can only have one

potentially large eigenvalue while all other eigenvalues must approach zero. Lemma 3 implies that at any time step 𝑡 , the “gap" between 𝑃𝑡 ’s

second-largest eigenvalue and the smallest eigenvalue can be upper bounded by a constant. Given that the determinant of 𝑃𝑡 converges to 0

at an exponential rate, all the eigenvalues of 𝑃𝑡 except the largest one must also converge to 0 exponentially fast.

Lemma 2. In Algorithm 1, let the eigenvalues of 𝑃𝑡 be 𝜎1 ≥ · · · ≥ 𝜎𝑑 and the eigenvalues of 𝑃𝑡+1 be {𝜎 ′
1
, · · · , 𝜎 ′

𝑑
}. Then we have

(1) for any 3 ≤ 𝑖 ≤ 𝑑 , we have equalities

𝜎 ′
𝑖 =

𝑑2

𝑑2 − 1

𝜎𝑖 .

(2) for 𝜎 ′
1
, 𝜎 ′

2
, we have

𝜎′
1
𝜎′

2

𝜎1𝜎2

= 𝑑4

(𝑑+1)3 (𝑑−1) < 1 and the following bound

max{𝜎 ′
1
, 𝜎 ′

2
} ∈ [ 𝑑2

(𝑑 + 1)2
𝜎1,

𝑑2

𝑑2 − 1

𝜎1], (18)

min{𝜎 ′
1
, 𝜎 ′

2
} ∈ [ 𝑑2

(𝑑 + 1)2
𝜎2,

𝑑2

𝑑2 − 1

𝜎2] . (19)

Proof. Claim 1. Suppose 𝑃𝑡 = 𝑈 Σ𝑈⊤
, where Σ = diag(𝜎1, · · · , 𝜎𝑑 ) and𝑈 = [𝒖1, · · · , 𝒖𝑑 ]. From the update rule of 𝑃𝑡+1, for any 3 ≤ 𝑖 ≤ 𝑑

we have

𝑃𝑡+1𝒖𝑖 =
𝑑2

𝑑2 − 1

(
𝑃𝑡 −

2

𝑑 + 1

𝑃𝑡 �̃�𝑡 �̃�
⊤
𝑡 𝑃𝑡

)
𝒖𝑖

=
𝑑2

𝑑2 − 1

𝜎𝑖𝒖𝑖 −
𝑑2

𝑑2 − 1

· 2𝜎𝑖

𝑑 + 1

𝑃𝑡 �̃�𝑡 (�̃�⊤𝑡 𝒖𝑖 )

=
𝑑2

𝑑2 − 1

𝜎𝑖𝒖𝑖 , (20)

where Eq (20) holds because �̃�𝑡 ∈ span{𝒖1, 𝒖2}. Therefore, { 𝑑2

𝑑2−1
𝜎𝑖 }𝑑𝑖=3

are 𝑑 − 2 eigenvalues of 𝑃𝑡+1.

Claim 2. By the choice of 𝒈𝑡 , the cutting hyper plane always goes through 𝒙𝑡 (i.e., 𝛼 = 0). Therefore, by Eq (10) we obtain

∏𝑑
𝑖=1

𝜎′
𝑖∏𝑑

𝑖=1
𝜎𝑖

=

𝑑2

(𝑑+1)2
·
(

𝑑2

𝑑2−1

)𝑑−1

. Consider Eq (20), we conclude that the remaining two eigenvalues of 𝑃𝑡+1 satisfy

𝜎 ′
1
𝜎 ′

2

𝜎1𝜎2

=
𝑑2

(𝑑 + 1)2
· 𝑑2

𝑑2 − 1

=
𝑑4

(𝑑 + 1)3 (𝑑 − 1)
< 1. (21)

Next we derive the bound for 𝜎 ′
1
, 𝜎 ′

2
. Let 𝒈𝑡 = 𝑝𝒖1 + 𝑞𝒖2, and

𝑃𝑡 �̃�𝑡 =
𝑝𝜎1√

𝑝2𝜎1 + 𝑞2𝜎2

𝒖1 +
𝑞𝜎2√

𝑝2𝜎1 + 𝑞2𝜎2

𝒖2 ≜ 𝑣1𝒖1 + 𝑣2𝒖2 .

It is easy to see that
𝑑2−1

𝑑2
𝜎 ′

1
, 𝑑

2−1

𝑑2
𝜎 ′

2
are the two eigenvalues of the following 2 × 2 matrix

𝐴 =

[
𝜎1 0

0 𝜎2

]
− 2

𝑑 + 1

[
𝑣1

𝑣2

]
·
[
𝑣1 𝑣2

]
. (22)

Without loss of generality, we assume 𝜎 ′
1
≥ 𝜎 ′

2
. Applying Weyl’s inequality in matrix theory [5, 12] to matrix 𝐴 yields

𝜎1 ≥ 𝑑2 − 1

𝑑2
𝜎 ′

1
≥ 𝜎2 ≥ 𝑑2 − 1

𝑑2
𝜎 ′

2
. (23)

On the other hand, from Eq (21) we also have

𝜎 ′
1

𝜎1

=
𝑑4

(𝑑 + 1)3 (𝑑 − 1)
𝜎2

𝜎 ′
2

≥ 𝑑4

(𝑑 + 1)3 (𝑑 − 1)
· 𝑑

2 − 1

𝑑2
=

𝑑2

(𝑑 + 1)2
, (24)

𝜎 ′
2

𝜎2

=
𝑑4

(𝑑 + 1)3 (𝑑 − 1)
𝜎1

𝜎 ′
1

≥ 𝑑4

(𝑑 + 1)3 (𝑑 − 1)
· 𝑑

2 − 1

𝑑2
=

𝑑2

(𝑑 + 1)2
. (25)

From Eq (23), (24), (25), we obtain Eq (18), (19) and therefore complete the proof. □

Lemma 3. At each time step 𝑡 in Algorithm 1, let the eigenvalue of 𝑃𝑡 be 𝜎
(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

. Further let 𝐷𝑡 = 𝜎
(𝑡 )
2

/𝜎 (𝑡 )
𝑑

, we claim



(1) for any 𝑡 ≥ 0, 𝐷𝑡+1 ≤ 𝑑+1

𝑑−1
· 𝐷𝑡 ;

(2) if 𝐷𝑡 >
𝑑+1

𝑑−1
, 𝐷𝑡+1 ≤ 𝐷𝑡 .

(3) for any 𝑛 ≥ 0,

max

0≤𝑡 ≤𝑛
𝐷𝑡 ≤

(𝑑 + 1

𝑑 − 1

)
2

. (26)

Proof. From Lemma 2, we know that the eigenvalues of 𝑃𝑡+1 is {𝜎 ′
1
, 𝜎 ′

2
, 𝑑2

𝑑2−1
𝜎
(𝑡 )
3

, · · · , 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑑

}, where 𝜎 ′
1
≥ 𝜎 ′

2
and

𝑑2

(𝑑 + 1)2
𝜎
(𝑡 )
2

≤ 𝜎 ′
2
≤ 𝑑2

𝑑2 − 1

𝜎
(𝑡 )
2

(27)

Claim 1. Because 𝜎 ′
1
≥ 𝜎 ′

2
, 𝜎

(𝑡 )
3

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

, and note that 𝜎
(𝑡+1)
2

and 𝜎
(𝑡+1)
𝑑

are the second-largest element and the smallest element of

{𝜎 ′
1
, 𝜎 ′

2
, 𝑑2

𝑑2−1
𝜎
(𝑡 )
3

, · · · , 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑑

}, the value of (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) must satisfy one of the following situation:

(1) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = (𝜎 ′
2
, 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑑

), from Eq (27) we have

𝐷𝑡+1

𝐷𝑡
=
𝑑2 − 1

𝑑2
·
𝜎 ′

2

𝜎2

≤ 1. (28)

(2) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = ( 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑖

, 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑑

) for some 3 ≤ 𝑖 ≤ 𝑑 − 1, we have

𝐷𝑡+1

𝐷𝑡
=
𝜎
(𝑡 )
𝑖

/𝜎 (𝑡 )
𝑑

𝜎
(𝑡 )
2

/𝜎 (𝑡 )
𝑑

≤ 1. (29)

(3) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = ( 𝑑2

𝑑2−1
𝜎
(𝑡 )
𝑖

, 𝜎 ′
2
) for some 3 ≤ 𝑖 ≤ 𝑑 − 1, from Eq (27) we have

𝐷𝑡+1

𝐷𝑡
=

𝑑2

𝑑2 − 1

·
𝜎
(𝑡 )
𝑖

𝜎 ′
2

·
𝜎
(𝑡 )
𝑑

𝜎
(𝑡 )
2

≤ 𝑑2

𝑑2 − 1

·
𝜎
(𝑡 )
2

𝜎 ′
2

≤ 𝑑2

𝑑2 − 1

· (𝑑 + 1)2

𝑑2
=
𝑑 + 1

𝑑 − 1

. (30)

By Eq (28), (29), (30), the first claim holds.

Claim 2. It suffices to show that the situation (3) cannot happen when 𝐷𝑡 >
𝑑+1

𝑑−1
. In fact, when 𝐷𝑡 >

𝑑+1

𝑑−1
, from Eq (27) we have

𝜎 ′
2
≥ 𝑑2

(𝑑 + 1)2
𝜎
(𝑡 )
2

=
𝑑2

(𝑑 + 1)2
𝜎
(𝑡 )
𝑑

𝐷𝑡 >
𝑑2

(𝑑 + 1)2
· 𝑑 + 1

𝑑 − 1

· 𝜎 (𝑡 )
𝑑

=
𝑑2

𝑑2 − 1

𝜎
(𝑡 )
𝑑

,

meaning 𝜎 ′
2
cannot be the smallest eigenvalue of 𝑃𝑡+1. As a result, the second claim holds by Eq (28), (29).

Claim 3.We prove Eq (26) by contradiction. Let 𝑛0 be the smallest index in set arg max0≤𝑡 ≤𝑛 𝐷𝑡 . If 𝑛0 = 0, we have max0≤𝑡 ≤𝑛 𝐷𝑡 = 𝐷0 =

1 <

(
𝑑+1

𝑑−1

)
2

. Now consider the case 𝑛0 ≥ 1 and suppose 𝐷𝑛0
>

(
𝑑+1

𝑑−1

)
2

. By Claim 1, we have 𝐷𝑛0−1 ≥ 𝑑−1

𝑑+1
𝐷𝑛0

> 𝑑+1

𝑑−1
. Apply Claim 2 to

𝐷𝑛0−1, we obtain 𝐷𝑛0
≤ 𝐷𝑛0−1, which contradicts the definition of 𝑛0. Hence, Claim 3 holds. □

Now we are ready to present the proof of the convergence theorem for Algorithm 1:

Theorem 4. At each time step 𝑡 in Algorithm 1, let the eigenvalues of 𝑃𝑡 be 𝜎
(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

. For any 𝑑 > 1,𝑇 > 0, we have

(1) for any 2 ≤ 𝑖 ≤ 𝑑 ,

𝜎
(𝑇 )
𝑖

≤ exp

(
4

𝑑
− 𝑇

𝑑2

)
. (31)

(2) the ℓ2 estimation error for \∗ is given by \∗ − ˆ\𝑇


2

≤ 2

√
𝑑 − 1 exp ( 2

𝑑
− 𝑇

2𝑑2
), (32)

Proof. Since the depth of the cut 𝛼 = 0 through out the execution of Algorithm 1, from Eq (10) we have

𝑑∏
𝑖=1

𝜎
(𝑇 )
𝑖

=
det 𝑃𝑛

det 𝑃0

≤ exp

(
− 𝑇

𝑑

)
. (33)



From Lemma 3, we have 𝜎
(𝑇 )
𝑖

≥ 𝜎
(𝑇 )
𝑑

≥
(
𝑑−1

𝑑+1

)
2 · 𝜎 (𝑛)

2
,∀3 ≤ 𝑖 ≤ 𝑑. Therefore,

exp

(
− 𝑇

𝑑

)
≥

𝑑∏
𝑖=1

𝜎
(𝑇 )
𝑖

≥ 𝜎
(𝑇 )
2

· 𝜎 (𝑇 )
2

·
[ (𝑑 − 1

𝑑 + 1

)
2 · 𝜎 (𝑇 )

2

]𝑑−2

= [𝜎 (𝑇 )
2

]𝑑 ·
(
1 − 2

𝑑 + 1

)
2𝑑−4

≥ exp (−4) · [𝜎 (𝑇 )
2

]𝑑 .

Rearranging terms yields 𝜎
(𝑇 )
2

≤ exp

(
4

𝑑
− 𝑇

𝑑2

)
, and thus 𝜎

(𝑇 )
𝑖

≤ exp

(
4

𝑑
− 𝑇

𝑑2

)
,∀2 ≤ 𝑖 ≤ 𝑑 .

Let ⟨𝒙,𝒚⟩ = arccos ( 𝒙 ·𝒚
∥𝒙 ∥ · ∥𝒚 ∥ ) denote the included angle between vector 𝒙 and 𝒚, now we are prepared to upper bound the directional

estimation error sin⟨ ˆ\𝑇 , \∗⟩. First of all, note that \∗, 0 ∈ E𝑇 for any 𝑛 ≥ 0, meaning there exists {(𝑝𝑖 , 𝑞𝑖 )}𝑑𝑖=1
such that

\∗ = 𝒙𝑇 +
𝑑∑
𝑖=1

𝑝𝑖𝒖
(𝑇 )
𝑖

,

𝑑∑
𝑖=1

𝑝2

𝑖

𝜎
(𝑇 )
𝑖

≤ 1. (34)

0 = 𝒙𝑇 +
𝑑∑
𝑖=1

𝑞𝑖𝒖
(𝑇 )
𝑖

,

𝑑∑
𝑖=1

𝑞2

𝑖

𝜎
(𝑇 )
𝑖

≤ 1. (35)

As a result, \∗ =
∑𝑑
𝑖=1

(𝑝𝑖 − 𝑞𝑖 )𝒖 (𝑇 )𝑖
, and 𝑝𝑖 , 𝑞𝑖 ≤

√
𝜎
(𝑇 )
𝑖

, 2 ≤ 𝑖 ≤ 𝑑 . Therefore,

sin⟨\∗, ˆ\𝑇 ⟩ =
√

1 − cos
2⟨\∗, ˆ\𝑇 ⟩ =

√
1 − (\⊤∗ 𝒖1)2

∥\∗∥2

2

=
1

∥\∗∥2

·

√√√
𝑑∑
𝑖=2

(𝑝𝑖 − 𝑞𝑖 )2

≤ 2

∥\∗∥2

·

√√√
𝑑∑
𝑖=2

𝜎
(𝑇 )
𝑖

,

Now we know that the directional inference error for \∗ converges to zero at rate𝑂
(
𝑑

1

2 exp (− 𝑇
2𝑑2

)
)
. When the system knows ∥\∗∥2 = 1, the

ℓ2 estimation error for \∗ can be obtained from\∗ − ∥\∗∥2 ·
ˆ\𝑇

∥ ˆ\𝑇 ∥2


2

≤ 2∥ ˆ\𝑇 ∥2 sin(⟨\∗, ˆ\𝑇 ⟩/2)

≤ 2

√√√
𝑑∑
𝑖=2

𝜎
(𝑇 )
𝑖

(36)

where the last inequality holds because sin𝑥 ≤ 𝑥,∀𝑥 > 0. In particular, plugin Eq (11) into the R.H.S. of Eq (36), we obtain Eq (12).

□

B OMITTED PROOFS IN SECTION 4.3
The following Lemma 4 and 5 are used in the proof of Theorem 2. Lemma 4 and 5 are generalizations of Lemma 2 and 3 under arbitrary

cutting depth 𝛼𝑡 .

Lemma 4. In Algorithm 2, suppose a valid cut is executed at step 𝑡 with depth − 1

𝑘𝑑
≤ 𝛼𝑡 ≤ 0. Let the eigenvalues of 𝑃𝑡 be 𝜎1 ≥ · · · ≥ 𝜎𝑑 and

the eigenvalues of 𝑃𝑡+1 be {𝜎 ′
1
, · · · , 𝜎 ′

𝑑
}. Then we have

(1) for any 3 ≤ 𝑖 ≤ 𝑑 , we have equalities

𝜎 ′
𝑖 =

𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎𝑖 .

(2) for 𝜎 ′
1
, 𝜎 ′

2
, we have

𝜎′
1
𝜎′

2

𝜎1𝜎2

=
𝑑4 (1−𝛼𝑡 )3 (1+𝛼𝑡 )

(𝑑+1)3 (𝑑−1) < 1 and the following bound

max{𝜎 ′
1
, 𝜎 ′

2
} ∈ [𝑑

2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
𝜎1,

𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎1], (37)

min{𝜎 ′
1
, 𝜎 ′

2
} ∈ [𝑑

2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
𝜎2,

𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎2] . (38)



Proof. Claim 1. Suppose 𝑃𝑡 = 𝑈 Σ𝑈⊤
, where Σ = diag(𝜎1, · · · , 𝜎𝑑 ) and𝑈 = [𝒖1, · · · , 𝒖𝑑 ]. From the update rule of 𝑃𝑡+1, for any 3 ≤ 𝑖 ≤ 𝑑

we have

𝑃𝑡+1𝒖𝑖 =
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

(
𝑃𝑡 −

2(1 + 𝑑𝛼𝑡 )
(𝑑 + 1) (1 + 𝛼𝑡 )

𝑃𝑡 �̃�𝑡 �̃�
⊤
𝑡 𝑃𝑡

)
𝒖𝑖

=
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎𝑖𝒖𝑖 −
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

· 2(1 + 𝑑𝛼𝑡 )𝜎𝑖
(𝑑 + 1) (1 + 𝛼𝑡 )

𝑃𝑡 �̃�𝑡 (�̃�⊤𝑡 𝒖𝑖 )

=
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎𝑖𝒖𝑖 , (39)

where Eq (39) holds because �̃�𝑡 ∈ span{𝒖1, 𝒖2}. Therefore, {
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎𝑖 }𝑑𝑖=3
constitute 𝑑 − 2 eigenvalues of 𝑃𝑡+1.

Claim 2. From Eq (10) we have

∏𝑑
𝑖=1

𝜎′
𝑖∏𝑑

𝑖=1
𝜎𝑖

=
𝑑2 (1−𝛼𝑡 )2

(𝑑+1)2
·
(
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

)𝑑−1

. Consider Eq (39), we conclude that the remaining two eigenvalues of

𝑃𝑡+1 satisfy

𝜎 ′
1
𝜎 ′

2

𝜎1𝜎2

=
𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
·
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

=
𝑑4 (1 − 𝛼𝑡 )3 (1 + 𝛼𝑡 )
(𝑑 + 1)3 (𝑑 − 1)

< 1. (40)

Next we derive the bound for 𝜎 ′
1
, 𝜎 ′

2
. Let 𝒈𝑡 = 𝑝𝒖1 + 𝑞𝒖2, and

𝑃𝑡 �̃�𝑡 =
𝑝𝜎1√

𝑝2𝜎1 + 𝑞2𝜎2

𝒖1 +
𝑞𝜎2√

𝑝2𝜎1 + 𝑞2𝜎2

𝒖2 ≜ 𝑣1𝒖1 + 𝑣2𝒖2 .

It is easy to see that
𝑑2−1

𝑑2 (1−𝛼2

𝑡 )
𝜎 ′

1
, 𝑑2−1

𝑑2 (1−𝛼2

𝑡 )
𝜎 ′

2
are the two eigenvalues of the following 2 × 2 matrix

𝐴 =

[
𝜎1 0

0 𝜎2

]
− 2(1 + 𝑑𝛼𝑡 )

(𝑑 + 1) (1 + 𝛼𝑡 )

[
𝑣1

𝑣2

]
·
[
𝑣1 𝑣2

]
. (41)

Without loss of generality, we assume 𝜎 ′
1
≥ 𝜎 ′

2
. Applying Weyl’s inequality in matrix theory [5, 12] to matrix 𝐴 yields

𝜎1 ≥ 𝑑2 − 1

𝑑2 (1 − 𝛼2

𝑡 )
𝜎 ′

1
≥ 𝜎2 ≥ 𝑑2 − 1

𝑑2 (1 − 𝛼2

𝑡 )
𝜎 ′

2
. (42)

On the other hand, from Eq (40) we also have

𝜎 ′
1

𝜎1

=
𝑑4 (1 − 𝛼𝑡 )3 (1 + 𝛼𝑡 )
(𝑑 + 1)3 (𝑑 − 1)

𝜎2

𝜎 ′
2

≥ 𝑑4 (1 − 𝛼𝑡 )3 (1 + 𝛼𝑡 )
(𝑑 + 1)3 (𝑑 − 1)

· 𝑑2 − 1

𝑑2 (1 − 𝛼2

𝑡 )
=
𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
, (43)

𝜎 ′
2

𝜎2

=
𝑑4 (1 − 𝛼𝑡 )3 (1 + 𝛼𝑡 )
(𝑑 + 1)3 (𝑑 − 1)

𝜎1

𝜎 ′
1

≥ 𝑑4 (1 − 𝛼𝑡 )3 (1 + 𝛼𝑡 )
(𝑑 + 1)3 (𝑑 − 1)

· 𝑑2 − 1

𝑑2 (1 − 𝛼2

𝑡 )
=
𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
. (44)

From Eq (42), (43), (44), we obtain Eq (18), (19) and therefore complete the proof. □

Lemma 2 characterizes the convergence of 𝑃𝑡 : the product of the largest two eigenvalues shrinks by a constant factor after each step. Since

det(𝑃𝑡 ) approaches zero at an exponential rate (from Eq (10)), 𝑃𝑡 can only have one potentially large eigenvalue while all other eigenvalues

must approach zero. We formalize the claim in the following Lemma 3.

Lemma 5. Suppose a valid cut is executed at step 𝑡 with depth − 1

𝑘𝑑
≤ 𝛼𝑡 ≤ 0 in Algorithm 2. Let the eigenvalue of 𝑃𝑡 be 𝜎

(𝑡 )
1

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

.

Further let 𝐷𝑡 = 𝜎
(𝑡 )
2

/𝜎 (𝑡 )
𝑑

, we claim

(1) for any 𝑡 ≥ 0, 𝐷𝑡+1 ≤ (𝑑+1) (1+𝛼𝑡 )
(𝑑−1) (1−𝛼𝑡 ) · 𝐷𝑡 ;

(2) if 𝐷𝑡 >
(𝑑+1) (1+𝛼𝑡 )
(𝑑−1) (1−𝛼𝑡 ) , 𝐷𝑡+1 ≤ 𝐷𝑡 .

(3) for any 𝑛 ≥ 0,

max

0≤𝑡 ≤𝑛
𝐷𝑡 ≤

(𝑑 + 1

𝑑 − 1

)
2

. (45)

Proof. From Lemma 2, we know that the eigenvalues of 𝑃𝑡+1 is {𝜎 ′
1
, 𝜎 ′

2
,
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
3

, · · · , 𝑑
2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑑

}, where 𝜎 ′
1
≥ 𝜎 ′

2
and

𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
𝜎
(𝑡 )
2

≤ 𝜎 ′
2
≤

𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎
(𝑡 )
2

(46)

Claim 1. Because 𝜎 ′
1
≥ 𝜎 ′

2
, 𝜎

(𝑡 )
3

≥ · · · ≥ 𝜎
(𝑡 )
𝑑

, and note that 𝜎
(𝑡+1)
2

and 𝜎
(𝑡+1)
𝑑

are the second-largest element and the smallest element of

{𝜎 ′
1
, 𝜎 ′

2
,
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
3

, · · · , 𝑑
2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑑

}, the value of (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) must satisfy one of the following situation:



(1) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = (𝜎 ′
2
,
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑑

), from Eq (46) we have

𝐷𝑡+1

𝐷𝑡
=

𝑑2 − 1

𝑑2 (1 − 𝛼2

𝑡 )
·
𝜎 ′

2

𝜎
(𝑡 )
2

≤ 1. (47)

(2) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = ( 𝑑
2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑖

,
𝑑2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑑

) for some 3 ≤ 𝑖 ≤ 𝑑 − 1, we have

𝐷𝑡+1

𝐷𝑡
=
𝜎
(𝑡 )
𝑖

/𝜎 (𝑡 )
𝑑

𝜎
(𝑡 )
2

/𝜎 (𝑡 )
𝑑

≤ 1. (48)

(3) if (𝜎 (𝑡+1)
2

, 𝜎
(𝑡+1)
𝑑

) = ( 𝑑
2 (1−𝛼2

𝑡 )
𝑑2−1

𝜎
(𝑡 )
𝑖

, 𝜎 ′
2
) for some 3 ≤ 𝑖 ≤ 𝑑 − 1, from Eq (46) we have

𝐷𝑡+1

𝐷𝑡
=
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

·
𝜎
(𝑡 )
𝑖

𝜎 ′
2

·
𝜎
(𝑡 )
𝑑

𝜎
(𝑡 )
2

≤
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

·
𝜎
(𝑡 )
2

𝜎 ′
2

≤
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

· (𝑑 + 1)2

𝑑2 (1 − 𝛼𝑡 )2
=

(𝑑 + 1) (1 + 𝛼𝑡 )
(𝑑 − 1) (1 − 𝛼𝑡 )

. (49)

By Eq (47), (48), (49), the first claim holds.

Claim 2. It suffices to show that the situation (3) cannot happen when 𝐷𝑡 >
𝑑+1

𝑑−1
. In fact, when 𝐷𝑡 >

𝑑+1

𝑑−1
, from Eq (46) we have

𝜎 ′
2
≥ 𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
𝜎
(𝑡 )
2

=
𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
𝜎
(𝑡 )
𝑑

𝐷𝑡 >
𝑑2 (1 − 𝛼𝑡 )2

(𝑑 + 1)2
· (𝑑 + 1) (1 + 𝛼𝑡 )
(𝑑 − 1) (1 − 𝛼𝑡 )

· 𝜎 (𝑡 )
𝑑

=
𝑑2 (1 − 𝛼2

𝑡 )
𝑑2 − 1

𝜎
(𝑡 )
𝑑

,

meaning 𝜎 ′
2
cannot be the smallest eigenvalue of 𝑃𝑡+1. As a result, the second claim holds by Eq (47), (48).

Claim 3. We prove Eq (45) by contradiction. Let 𝑛0 be the smallest index in set arg max0≤𝑡 ≤𝑛 𝐷𝑡 . If 𝑛0 = 0, we have max0≤𝑡 ≤𝑛 𝐷𝑡 =

𝐷0 = 1 <

(
𝑑+1

𝑑−1

)
2

. Now consider the case 𝑛0 ≥ 1 and suppose 𝐷𝑛0
>

(
𝑑+1

𝑑−1

)
2

. By Claim 1 and the fact that − 1

2𝑑
≤ 𝛼𝑛0−1 ≤ 0, we have

𝐷𝑛0−1 ≥ (𝑑−1) (1−𝛼𝑛
0
−1)

(𝑑+1) (1+𝛼𝑛
0
−1) 𝐷𝑛0

>
(𝑑+1) (1+𝛼𝑛

0
−1)

(𝑑−1) (1−𝛼𝑛
0
−1) . Apply Claim 2 to 𝐷𝑛0−1, we obtain 𝐷𝑛0

≤ 𝐷𝑛0−1, which contradicts the definition of 𝑛0.

Hence, Claim 3 holds.

□

Lemma 6. With the choice of 𝛼𝑡 given in Eq (15), we conclude that

(1) After each cut step, Vol(E𝑡+1) ≤ exp

(
− (𝑘−1)2

2𝑘2𝑑

)
Vol(E𝑡 ).

(2) If at least 𝑑 exploration steps are taken during 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑛, we have _min (𝑉𝑛+𝑡0
) ≥ _min (𝑉𝑡0

) + 4𝐷0

25
− 3𝜖0.

(3) At any exploitation step 𝑡 , the instantaneous regret is upper bounded by 2𝐿∥\∗ − 𝒖 (𝑡 )
1

∥2

2
.

Proof. First Claim:We first justify our choice of 𝛼𝑡 . With out loss of generality, assume 𝒂1,𝑡 is preferred over 𝒂0,𝑡 , then according to the

user’s decision rule (3) we have

\⊤𝑡 (𝒂0,𝑡 − 𝒂1,𝑡 ) ≤ |𝛽𝑡 | · (∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
) ≤ 𝑐2𝑡

𝛾2 · (∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
) . (50)

Next we translate Eq (50) into the estimation with respect to \∗. According to the Estimation rule (2), with probability 1 − 𝛿 ,

(\∗ − \𝑡 )⊤ (𝒂0,𝑡 − 𝒂1,𝑡 ) ≤ ∥\∗ − \𝑡 ∥𝑉𝑡 · ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

≤ 𝑐1𝑔(𝛿)𝑡𝛾1 ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡
,

and therefore according to the (𝑐,𝛾)−rational assumption, we obtain

\⊤∗ (𝒂0,𝑡 − 𝒂1,𝑡 ) ≤ \⊤𝑡 (𝒂0,𝑡 − 𝒂1,𝑡 ) + (\∗ − \𝑡 )⊤ (𝒂0,𝑡 − 𝒂1,𝑡 )
≤ 𝑐2𝑡

𝛾2 · (∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
) + 𝑐1𝑔(𝛿)𝑡𝛾1 ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

≤ 𝑐𝑡𝛾
(
∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
+ 𝑔(𝛿) · ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

)
. (51)

According to 𝜖0-DC and the definition of 𝒈𝑡 , we have

∥𝒈𝑡 − (𝒂0,𝑡 − 𝒂1,𝑡 )∥2 ≤ ∥𝒂0,𝑡 − 𝒂0,𝑡 ∥2 + ∥𝒂1,𝑡 − 𝒂1,𝑡 ∥2 ≤ 2𝜖0 . (52)

Using Eq (52), we may relax Eq (51) by replacing 𝒂0,𝑡 − 𝒂1,𝑡 with 𝒈𝑡 = 𝒂0,𝑡 − 𝒂1,𝑡 , accounting for the error introduced by the inaccuracy of

the exploration direction as below:



𝒈⊤𝑡 (\∗ − 𝒙𝑡 ) = 𝒈⊤𝑡 \∗

=(𝒂0,𝑡 − 𝒂1,𝑡 )⊤\∗ + (𝒈𝑡 − (𝒂0,𝑡 − 𝒂1,𝑡 ))⊤\∗

≤𝑐𝑡𝛾
(
∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
+ 𝑔(𝛿) · ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

)
+ ∥𝒈𝑡 − 𝑎0,𝑡 + 𝑎1,𝑡 ∥2 · ∥\∗∥2

≤𝑐𝑡𝛾
(
∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
+ 𝑔(𝛿) · ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

)
+ 2𝜖0, (53)

where Eq (53) holds because we assume ∥\∗∥2 = 1. Hence, by equation (6), the cutting depth

𝛼𝑡 = −
𝑐𝑡𝛾

(
∥𝒂0,𝑡 ∥𝑉 −1

𝑡
+ ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
+ 𝑔(𝛿) · ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡

)
+ 2𝜖0

∥𝒈𝑡 ∥𝑃𝑡
. (54)

Therefore, we may leverage Eq (54) to evaluate the cutting depth 𝛼𝑡 and perform a cut whenever 𝛼𝑡 ≥ − 1

𝑘𝑑
> − 1

𝑑
is satisfied. From Eq

(10), we therefore conclude Vol(E𝑡+1) ≤ exp

(
− (𝑘−1)2

2𝑘2𝑑

)
Vol(E𝑡 ).

Second Claim: To prove the second claim, we need the following auxiliary lemma:

Lemma 7. 𝐴 is a 𝑑 × 𝑑 PSD matrix with eigendecomposition 𝐴 = 𝑈 diag(𝜎1, · · · , 𝜎𝑑 )𝑈𝑇 , where 𝜎1 ≤ · · · ≤ 𝜎𝑑 and𝑈 = [𝒖1, · · · , 𝒖𝑑 ]. For any
𝒗 ∈ R𝑑 , let the eigenvalues of 𝐴 + 𝒗𝒗𝑇 be 𝜎 ′

1
≤ · · · ≤ 𝜎 ′

𝑑
. Then we have

(1) 𝜎1 ≤ 𝜎 ′
1
≤ 𝜎2 ≤ 𝜎 ′

2
≤ · · · ≤ 𝜎𝑑 ≤ 𝜎 ′

𝑑
≤ 𝜎𝑑 + 𝒗𝑇 𝒗 .

(2) if 𝒗 = 𝑝𝒖1 +𝑞𝒖𝑑 + 𝝐 for some 𝑝2 +𝑞2 = 1, ∥𝝐 ∥2 = 𝜖 < 1, {𝜎𝑖 }𝑑𝑖=1
and {𝜎 ′

𝑖
}𝑑
𝑖=1

have at least 𝑑 − 2 common values. Furthermore, conditioned
on 𝜎𝑑 > 𝜎1 + 𝑝2 − 𝑞2, at least one of the following claims is true:
a) 𝜎 ′

1
≥ 𝜎1 + 𝑝2 − |𝑝𝑞 | − 3𝜖.

b) 𝜎 ′
1
= 𝜎2, and 𝜎 ′

𝑖
≥ 𝜎1 + 𝑝2 − |𝑝𝑞 | − 3𝜖 for some 2 ≤ 𝑖 ≤ 𝑑 .

Proof. The first claim is a direct corollary of Weyl’s inequality in matrix theory [5, 12]. Now we prove the second claim for the special

case 𝝐 = 0. From Secular Equations, we know that 𝜎 ′
1
is the smallest root of the following equation

𝑓 (_) =
𝑑∏
𝑖=1

(𝜎𝑖 − _) + 𝑝2

𝑑∏
𝑗≠1

(𝜎 𝑗 − _) + 𝑞2

𝑑∏
𝑗≠𝑑

(𝜎 𝑗 − _)

=

[
(𝜎1 − _) (𝜎𝑑 − _) + 𝑝2 (𝜎𝑑 − _) + 𝑞2 (𝜎1 − _)

] 𝑑∏
𝑗≠1,𝑑

(𝜎 𝑗 − _)

=

[
_2 − (1 + 𝜎1 + 𝜎𝑑 )_ + 𝑞2𝜎1 + 𝑝2𝜎𝑑 + 𝜎1𝜎𝑑

] 𝑑∏
𝑗≠1,𝑑

(𝜎 𝑗 − _).

Therefore, 𝜎 ′
1
is the smaller one between 𝜎2 and the smallest root of the quadratic equation _2 − (1 + 𝜎1 + 𝜎𝑑 ) + 𝑞2𝜎1 + 𝑝2𝜎𝑑 + 𝜎1𝜎𝑑 = 0, i.e.,

𝜎 ′
1
= min{𝜎2,

1 + 𝜎1 + 𝜎𝑑 −
√
(1 + 𝜎1 + 𝜎𝑑 )2 − 4(𝑞2𝜎1 + 𝑝2𝜎𝑑 + 𝜎1𝜎𝑑 )

2

}. (55)

Note that when 𝜎𝑑 > 𝜎1 + 𝑝2 − 𝑞2
, we have

1 + 𝜎1 + 𝜎𝑑 −
√
(1 + 𝜎1 + 𝜎𝑑 )2 − 4(𝑞2𝜎1 + 𝑝2𝜎𝑑 + 𝜎1𝜎𝑑 )

2

=
1 + 𝜎1 + 𝜎𝑑 −

√
(𝑝2 − 𝑞2 + 𝜎1 − 𝜎𝑑 )2 + 4𝑝2𝑞2

2

≥ 1

2

(1 + 𝜎1 + 𝜎𝑑 − |𝑝2 − 𝑞2 + 𝜎1 − 𝜎𝑑 | − 2|𝑝𝑞 |) (56)

=𝜎1 + 𝑝2 − |𝑝𝑞 |, (57)

where Eq (56) holds because

√
𝑎2 + 𝑏2 ≤ |𝑎 | + |𝑏 |. From Eq (55) and Eq (57) we conclude the proof.

Next it remains to show that with a small perturbation 𝝐 on 𝒗, the change of the smallest eigenvalue will only deviate at most 3𝜖 . From

Weyl’s eigenvalue perturbation inequality, for any Hermitian matrices𝑀,Δ, we have |_𝑘 (𝑀 + Δ) − _𝑘 (𝑀) | ≤ ∥Δ∥2, where _𝑘 (·) denotes the
𝑘−th largest eigenvalue of a given matrix. Using this tool, we can upper bound the difference between the smallest eigenvalues of matrix

𝐴 + 𝒗𝒗⊤ and 𝐴 + (𝒗 + 𝝐) (𝒗 + 𝝐)⊤ as below:



_1 (𝐴 + (𝒗 + 𝝐) (𝒗 + 𝝐)⊤) − _1 (𝐴 + 𝒗𝒗⊤)
≤∥𝝐𝒗⊤ + 𝒗𝝐⊤ + 𝝐𝝐⊤∥2 ≤ ∥𝝐𝒗⊤ + 𝒗𝝐⊤∥2 + ∥𝝐𝝐⊤∥2

≤2𝜖 + 𝜖2 < 3𝜖, (58)

where Eq (58) holds because for any ∥𝒙 ∥2 = 1, 𝒙⊤ (𝝐𝒗⊤ + 𝒗𝝐⊤)𝒙 ≤ 2∥𝝐 ∥2 and 𝒙⊤ (𝝐𝝐⊤)𝒙 ≤ ∥𝝐 ∥2

2
. □

Now we are ready to prove the second claim. Without loss of generality, we consider the case 𝐷0 = 1. Suppose Algorithm 2 had executed

𝑑 exploration steps from 𝑡 = 𝑡0 to 𝑡 = 𝑡0 + 𝑛. By the first claim of Lemma 7, we know {𝜎 (𝜏)
1

}𝑡
𝜏=1

is always non-decreasing. Therefore, it

suffices to prove that after 𝑑 consecutive exploration steps, 𝜎
(𝑡0+𝑑)
1

≥ 𝜎
(𝑡0)
1

+ 𝑝2 − |𝑝𝑞 | − 3𝜖0.

From the second claim in Lemma 7:

(1) if situation 𝑎) happens at least once during the 𝑑 exploration steps, we already obtain 𝜎
(𝑡0+𝑑)
1

≥ 𝜎
(𝑡0)
1

+ 𝑝2 − |𝑝𝑞 | − 3𝜖0.

(2) if we always observe situation 𝑏), consider the set 𝐶𝑡 = {𝑖 : 𝜎
(𝑡0+𝑡 )
𝑖

< 𝜎
(𝑡0)
1

+ 𝑝2 − |𝑝𝑞 | − 3𝜖0}. From Lemma 7, we can prove

|𝐶𝑡+1 | ≤ |𝐶𝑡 | − 1. Since 𝜎
(𝑡0)
𝑑

> 𝜎
(𝑡0)
1

+ 𝑝2 − |𝑝𝑞 | − 3𝜖0, we have |𝐶1 | ≤ 𝑑 − 1. Therefore, there must exists 1 ≤ 𝑘 ≤ 𝑑 such that |𝐶𝑘 | = 0,

meaning 𝜎
(𝑡0+𝑑)
1

≥ 𝜎
(𝑘)
1

≥ 𝜎
(𝑡0)
1

+ 𝑝2 − |𝑝𝑞 | − 3𝜖0.

By taking (𝑝, 𝑞) = ( 4

5
, 3

5
), we obtain the desirable result.

Thrid Claim: Given ∥\∗∥2 = 1, denote
ˆ\ = 𝒖 (𝑡 )

1
and ∥\∗ − ˆ\ ∥2 = 𝜖 . Let 𝑥∗ = arg max𝑥 ∈A 𝑥𝑇 \∗ and 𝑥 = arg max𝑥 ∈A 𝑥𝑇 ˆ\ . We have

\𝑇∗ (𝑥∗ − 𝑥) = (\∗ − ˆ\ )𝑇 𝑥∗ + (𝑥∗ − 𝑥)𝑇 ˆ\ + ( ˆ\ − \∗)𝑇 𝑥

≤ (\∗ − ˆ\ )𝑇 𝑥∗ + ( ˆ\ − \∗)𝑇 𝑥 by definition of 𝑥

= ( ˆ\ − \∗)𝑇 (𝑥 − 𝑥∗)

≤ ∥ ˆ\ − \∗∥2 · ∥𝑥 − 𝑥∗∥2 by Cauchy-Schwarz

≤ 𝐿 · ∥ ˆ\ − \∗∥2

2
. by L-SRC

As a result, the instantaneous regret is upper bounded by 2𝐿∥𝒖 (𝑡 )
1

− \∗∥2

2
. □

Now we are ready to analyze the regret of Algorithm 2:

Theorem 5. For any 𝑑 > 1, 𝑛 > 0, let 𝜎 (𝑛)
𝑖

be the 𝑖-th largest eigenvalue of 𝑃𝑛 after the 𝑛-th cut, we have
(1) For any 2 ≤ 𝑖 ≤ 𝑑 ,

𝜎
(𝑛)
𝑖

≤ exp

(
4

𝑑
− (𝑘 − 1)2𝑛

𝑘2𝑑2

)
. (59)

(2) When𝑇0 = 𝑂

(
𝑐𝐿

1

2 𝐷
1

2

1
𝐷
− 3

2

0
𝑔(𝛿)𝑑2𝑇

1

2
+𝛾
)
and 𝜖0 < 𝑂

(
𝑐𝐷1𝐷

− 1

2

0
𝑑−

1

2𝑇− 1

4
+𝛾

2

)
, the regret of RAES is upper bounded by𝑂

(
𝑐𝐿

1

2 𝐷
3

2

1
𝐷
− 3

2

0
𝑔( 𝛿

𝑇0

)𝑑2𝑇
1

2
+𝛾
)

with probability 1 − 𝛿 .

Proof. Since the depth of the cut 𝛼𝑡 ≥ − 1

𝑘𝑑
through out the execution of Algorithm 2, from Lemma 1 and Eq (10) we have

𝑑∏
𝑖=1

𝜎
(𝑛)
𝑖

=

𝑛−1∏
𝑖=0

det 𝑃𝑖+1

det 𝑃𝑖
≤

𝑛−1∏
𝑖=0

Vol(E𝑖+1)
Vol(E𝑖 )

= exp

(
− (𝑘 − 1)2𝑛

𝑘2𝑑

)
. (60)

From Lemma 3, we have 𝜎
(𝑛)
𝑖

≥ 𝜎
(𝑛)
𝑑

≥
(
𝑑−1

𝑑+1

)
2 · 𝜎 (𝑛)

2
,∀3 ≤ 𝑖 ≤ 𝑑. Therefore,

exp

(
− (𝑘 − 1)2𝑛

𝑘2𝑑

)
≥

𝑑∏
𝑖=1

𝜎
(𝑛)
𝑖

≥ 𝜎
(𝑛)
2

· 𝜎 (𝑛)
2

·
[ (𝑑 − 1

𝑑 + 1

)
2 · 𝜎 (𝑛)

2

]𝑑−2

= [𝜎 (𝑛)
2

]𝑑 ·
(
1 − 2

𝑑 + 1

)
2𝑑−4

≥ exp (−4) · [𝜎 (𝑛)
2

]𝑑 .

Rearranging terms yields 𝜎
(𝑛)
2

≤ exp

(
4

𝑑
− (𝑘−1)2𝑛

𝑘2𝑑2

)
, and thus 𝜎

(𝑛)
𝑖

≤ exp

(
4

𝑑
− (𝑘−1)2𝑛

𝑘2𝑑2

)
,∀2 ≤ 𝑖 ≤ 𝑑 .



Next we show the second claim. Suppose the total number of cut during the first 𝑇0/2 step is 𝑁0.

(1) if 𝑁0 ≥ 𝑑2𝑘2

(𝑘−1)2
log𝑇0 + 4𝑑𝑘2

(𝑘−1)2
, from Eq (59) we have 𝜎

(𝑁0)
𝑖

≤ 1

𝑇0

.

(2) if 𝑁0 < 𝑑2𝑘2

(𝑘−1)2
log𝑇0 + 4𝑑𝑘2

(𝑘−1)2
, for sufficiently large𝑇 , there are at least𝑇0/2−𝑁 ≥ 𝑇0/2− 𝑑2𝑘2

(𝑘−1)2
log𝑇0 − 4𝑑𝑘2

(𝑘−1)2
>

𝑇0

3
exploration steps

during the first 𝑇0/2 iterations. From the second claim of Lemma 1, _min (𝑉𝑇0
) ≥ 𝛽𝑇0

𝑑
, where 𝛽 = 1

3
( 4𝐷0

25
− 3𝜖0) is a positive constant.

Using the definition of matrix norm, we have for any 𝑡 , ∥𝒂0,𝑡 ∥𝑉 −1

𝑡
, ∥𝒂1,𝑡 ∥𝑉 −1

𝑡
≤ 𝐷1

√
_max (𝑉 −1

𝑡 ), ∥𝒂0,𝑡 − 𝒂1,𝑡 ∥𝑉 −1

𝑡
≤ 2𝐷1

√
_max (𝑉 −1

𝑡 ),

and ∥𝒈𝑡 ∥𝑃𝑡 ≥ 𝐷0 (𝜎 (𝑡 )
2

)−
1

2 . Therefore, we have

𝛼𝑡 ≥ −2

[
𝑐𝑡𝛾𝐷1𝐷

−1

0

(
1 + 𝑔(𝛿)

)
·
√
_max (𝑉 −1

𝑡 ) + 𝜖0𝐷
−1

0

]
· (𝜎 (𝑡 )

2
)−

1

2 .

According to Algorithm 2, as long as we have −2

[
𝑐𝑡𝛾𝐷1𝐷

−1

0

(
1 +𝑔(𝛿)

)
·
√
_max (𝑉 −1

𝑡 ) + 𝜖0𝐷
−1

0

]
· (𝜎 (𝑡 )

2
)−

1

2 ≥ − 1

𝑘𝑑
, a cut will happen at

step 𝑡 and we can shrink

√
𝜎
(𝑡 )
2

with probability 1 − 𝛿 . In other words, after the last time Algorithm 2 choose to cut during the first 𝑇0

round, we have √
𝜎
(𝑡 )
2

≤ 2𝐷1𝑐𝑘𝑑
1.5𝑡𝛾 (1 + 𝑔(𝛿))
𝐷0

√
𝛽𝑇0

+ 2𝑘𝑑𝜖0

𝐷0

<
3𝐷1𝑐𝑘𝑑

1.5𝑇
𝛾

0
(1 + 𝑔(𝛿))

𝐷0

√
𝛽𝑇0

, (61)

where the last inequality holds because 𝜖0 <
𝑐𝐷1

2

√
𝛽
𝑑−

1

2𝑇− 1

4
+𝛾

2 . On the other hand, the total number of cuts 𝑛 such that Eq (61) is

satisfied is upper bounded by 𝑂 (log𝑇0) since 𝜎 (𝑡 )
2

shrinks exponentially w.r.t. the cut number 𝑡 . Therefore, when 𝑇 is reasonably

large, we can guarantee 𝑛 < 𝑇0/2 and conclude that Eq (61) holds for all 𝑡 > 𝑇0.

According to Eq (36) and the third claim in Lemma 1, when algorithm 2 enters the exploitation phase when 𝑡 > 𝑇0, with probability

1 −𝑇0𝛿 , the instantaneous regret is upper bounded by

\⊤∗ [(𝑎∗ − 𝑎0,𝑡 ) + (𝑎∗ − 𝑎1,𝑡 )] ≤ 8(𝑑 − 1) · 𝐿 ·
(

3𝐷1𝑐𝑘𝑑
1.5𝑇

𝛾

0
(1 + 𝑔(𝛿))

𝐷0

√
𝛽𝑇0

)
2

(62)

≤
72𝐷2

1
𝐿𝑐2𝑘2𝑑4 (1 + 𝑔(𝛿))2

𝛽𝐷2

0
𝑇

1−2𝛾

0

(63)

For each cut or exploration step in the first 𝑇0 rounds, the incurred instantaneous regret is at most 𝑇0𝐷1. For each following exploitation

step, the regret is upper bounded by

72𝐷2

1
𝐿𝑐2𝑘2𝑑4 (1+𝑔 (𝛿))2

𝐷2

0
𝛽𝑇

1−2𝛾

0

. Hence, we can upper bound the accumulated regret by

𝑅𝑇 ≤ 𝐷1𝑇0 +
72𝐷2

1
𝐿𝑐2𝑘2𝑑4 (1 + 𝑔(𝛿))2

𝐷2

0
𝛽𝑇0

·𝑇 1+2𝛾

≤ 12𝐷1

𝐷0

√
2𝐿𝐷1

𝛽
𝑐𝑘 (1 + 𝑔(𝛿)) · 𝑑2𝑇

1

2
+𝛾 , (64)

where the optimal regret is achieved when 𝑇0 = 6𝑐𝑘
𝐷0

√
6𝐿𝐷1

4𝐷
0

25
−3𝜖0

(
1 + 𝑔(𝛿)

)
𝑑2𝑇

1

2
+𝛾
, we have 𝑅𝑇 ≤ 12𝑐𝑘𝐷1

𝐷0

√
6𝐿𝐷1

4𝐷
0

25
−3𝜖0

(
1 + 𝑔(𝛿)

)
𝑑2𝑇

1

2
+𝛾
. By

applying the union bound to the first 𝑇0 rounds, we thus conclude that with probability 1 − 𝛿 ,

𝑅𝑇 ≤ 60𝐷1

𝐷0

√
6𝐿𝐷1

4𝐷0 − 75𝜖0

𝑐𝑘
(
1 + 𝑔( 𝛿

𝑇0

)
)
· 𝑑2𝑇

1

2
+𝛾 .

□

C OMITTED PROOFS IN SECTION 4.4
To derive our lower bound result, we need to leverage the minimax lower bound result for stochastic linear bandits (adapted from Theorem

24.1 in [23]). For convenience, we use \𝑖:𝑗 to denote the slice of vector \ from the 𝑖−th element to the 𝑗−th element.

Theorem 6. There exists a function 𝑇0 (𝑑) > 0 such that for any 𝑑 ≥ 1, 𝑇 > 𝑇0 (𝑑), and any algorithm G that has merely access to the
comparison feedback given by a rational user defined in Definition 1, there exists \ ∈ 𝜕B𝑑

1
such that the expected regret 𝑅𝑇 given by Eq (1)

obtained by G satisfies

𝑅
(𝑠)
𝑇

(G, \ ) ≥ exp(−2)
4

(𝑑 − 1)
√
𝑇 . (65)



Proof. We prove our claim by contradiction using Theorem 8. Essentially, we show that if the system has a powerful algorithm to achieve

an expected regret lower than the RHS of Eq. (17), then we can leverage this algorithm for the linear bandit problem in Theorem 8 with an

expected regret even lower than the lower bound and thus draw the contradiction.

Suppose for any 𝑑 > 0, there exists sufficiently large 𝑇 and an algorithm G such that for any parameter \∗ ∈ 𝜕B𝑑
1
, we have

E
[ 𝑇∑
𝑡=1

\⊤∗ (2𝑎∗ − 𝑎0,𝑡 − 𝑎1,𝑡 )
]
= 𝑅

(𝑠)
𝑇

(G, \∗) <
exp(−2)

4

(𝑑 − 1)
√
𝑇 .

As a result, at least one of the following inequalities must hold:

E
[ 𝑇∑
𝑡=1

\⊤∗ (𝑎∗ − 𝑎0,𝑡 )
]
<

exp(−2)
8

(𝑑 − 1)
√
𝑇,

E
[ 𝑇∑
𝑡=1

\⊤∗ (𝑎∗ − 𝑎1,𝑡 )
]
<

exp(−2)
8

(𝑑 − 1)
√
𝑇 .

(66)

Now suppose a principal can observe the interaction between a user and a system equipped with algorithm G, then he can construct two

algorithms G0,G1 for linear bandit as follows:

Algorithm G𝑖 :

Input: the time horizon 𝑇 .

For 𝑡 ∈ [𝑇 ]:
(1) Call algorithm G to generate two candidates (𝑎0,𝑡 , 𝑎1,𝑡 ).
(2) Present (𝑎0,𝑡 , 𝑎1,𝑡 ) to the user and and let her decide the winner 𝑎∗,𝑡 using decision rule 3.

(3) Return the feedback 𝑎∗,𝑡 to algorithm G and update the internal state of G accordingly.

Output: the sequential decisions {𝑎𝑖,𝑡 }𝑇𝑡=1
.

From Eq. (66), we know that at least one of {G0,G1} achieves an expected regret lower than
exp(−2)

8
(𝑑−1)

√
𝑇 , which draws a contradiction

to Theorem 8.

□

To prove Theorem 6, we need the following technical lemma:

Lemma 8. Let 𝑑 ≥ 2 and 𝑇 ≥ 𝑑2, the action set A = [−1, 1]𝑑 be a hypercube in R𝑑 , and

Θ =

{
\ ∈ R𝑑 : ∥\ ∥1 = 1, \

1:𝑑−1
∈ {− 1

√
𝑇
,

1

√
𝑇
}𝑑−1

}
.

Let the expected regret for a linear bandit problem induced by any fixed algorithm G and parameter \ be

𝑅𝑇 (G, \ ) = 𝑇 max

𝑎∈A
⟨𝑎, \⟩ − E[

𝑇∑
𝑡=1

⟨𝑎𝑡 , \⟩], (67)

where the expectation is taken with respect to the randomness generated by the standard Gaussian noise N(0, 1) in the reward. Then there must
exist a parameter vector \ ∈ Θ such that

𝑅𝑇 (G, \ ) ≥
exp(−2)

8

(𝑑 − 1)
√
𝑇 . (68)

Proof. Fix an algorithm G and a time horizon 𝑇 . For any \ ∈ Θ, let P\ be the probability measure on the probability space induced by

the 𝑇 -round interconnection of policy G and the problem instance given by \ . Let 𝐷 (·, ·) denote the relative entropy, from the general form

of divergence decomposition lemma (Lemma 15.1 in [23]), we have

𝐷 (P\ , P\ ′) = E\
[ 𝑇∑
𝑡=1

𝐷 (N (⟨𝑎𝑡 , \⟩, 1),N(⟨𝑎𝑡 , \ ′⟩, 1))
]

=
1

2

𝑇∑
𝑡=1

E\ [⟨𝑎𝑡 , \ − \ ′⟩2] . (69)

For any 𝑖 ∈ [𝑑 − 1] and \ ∈ Θ, let 𝑎𝑡,𝑖 and \𝑖 be the 𝑖-th element of 𝑎𝑡 and \ and define



𝑝\𝑖 = P\

( 𝑇∑
𝑡=1

I{sign(𝑎𝑡,𝑖 ) ≠ sign(\𝑖 )} ≥
𝑇

2

)
.

Let \, \ ′ be any pair of elements in Θ such that they only differ in the 𝑖−th element. Therefore, by the Bretagnolle-Huber inequality

(Theorem 14.2 in [23]) and Eq. (69),

𝑝\𝑖 + 𝑝\ ′
𝑖
≥ 1

2

exp

(
− 𝐷 (P\ , P\ ′)

)
=

1

2

exp

(
− 1

2

𝑇∑
𝑡=1

E\ [⟨𝑎𝑡 , \ − \ ′⟩2]
)

≥ 1

2

exp

(
− 1

2

·𝑇
( 2

√
𝑇

)
2

)
=

1

2

exp(−2).

Fix 𝑖 ∈ [𝑑 − 1], there are |Θ| = 2
𝑑−1

such pairs (\, \ ′). Take summation over 𝑖 and all such pairs, we obtain∑
\ ∈Θ

1

|Θ|

𝑑∑
𝑖=1

𝑝\𝑖 ≥
1

|Θ|

𝑑−1∑
𝑖=1

∑
\ ∈Θ

𝑝\𝑖

=
1

|Θ|

𝑑−1∑
𝑖=1

1

2

∑
(\,\ ′)

(𝑝\𝑖 + 𝑝\ ′
𝑖
)

≥ 𝑑 − 1

4

exp(−2),

which implies that there exists a \ ∈ Θ such that

∑𝑑
𝑖=1

𝑝\𝑖 ≥
𝑑−1

4
exp(−2). By the definition of 𝑝\𝑖 , the regret of G for this problem instance

with parameter \ is at least

𝑅𝑇 (A, \ ) = E\
[ 𝑇∑
𝑡=1

𝑑∑
𝑖=1

(sign(\𝑖 ) − 𝑎𝑡,𝑖 )\𝑖
]

≥
√

1

𝑇

𝑑∑
𝑖=1

E\

[ 𝑇∑
𝑡=1

I{sign(𝑎𝑡,𝑖 ) ≠ sign(\𝑖 )}
]

≥
√
𝑇

2

𝑑∑
𝑖=1

P\

( 𝑇∑
𝑡=1

I{sign(𝑎𝑡𝑖 ) ≠ sign(\𝑖 )} ≥
𝑇

2

)
=

√
𝑇

2

𝑑∑
𝑖=1

𝑝\𝑖 ≥
exp(−2)

8

(𝑑 − 1)
√
𝑇,

where the first line follows since the optimal action satisfies 𝑎∗
𝑖
= sign(\𝑖 ) and for 𝑖 ∈ [𝑑], the first inequality follows from a simple case-based

analysis showing that (sign(\𝑖 ) − 𝑎𝑡𝑖 )\𝑖 ≥ |\𝑖 |I{sign(𝑎𝑡𝑖 ) ≠ sign(\𝑖 )}, the second inequality is from Markov’s inequality, and the last

inequality follows from the choice of \ .

□
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